Euclidean limit of L^{2}-spectral properties of the Pauli Hamiltonians on constant curvature Riemann surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 381917
(http://iopscience.iop.org/0305-4470/38/9/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 03/06/2010 at 04:11

Please note that terms and conditions apply.

Euclidean limit of L^{2}-spectral properties of the Pauli Hamiltonians on constant curvature Riemann surfaces

Allal Ghanmi
Department of Mathematics, Faculty of Sciences, PO Box 1014, Agdal, Rabat 10 000, Morocco
E-mail: aghanmi@math.net

Received 19 July 2004, in final form 23 December 2004
Published 16 February 2005
Online at stacks.iop.org/JPhysA/38/1917

Abstract

We realize the Pauli Hamiltonians \mathbb{P}_{κ}^{v} (with constant magnetic field $v>0$) on a simply connected Riemann surface M_{κ} of constant scalar curvature $\kappa \in \mathbb{R}$ as second-order differential operators acting on differential 1-forms of M_{κ}. We also study the asymptotic behaviour of some aspects of their L^{2}-spectral properties when the Euclidean limit is taken. More exactly, we show that the L^{2} eigenprojector kernels on the plane $\mathbb{R}^{2}=\mathbb{C}$ (i.e., $\kappa=0$) corresponding to the Landau levels $8 v l ; l=0,1, \ldots$, can be recovered from the L^{2}-eigenprojector kernels of $\mathbb{P}_{\kappa}^{\nu}$ of the curved Riemann surfaces $M_{\kappa}, \kappa \neq 0$, in the limit $\kappa \longmapsto 0$.

PACS numbers: $02.30 . \mathrm{Gp}, 02.30 . \mathrm{Tp}, 02.30 . \mathrm{Jr}$

1. Introduction

A single non-relativistic spinless particle constrained to move on a two-dimensional analytic surface M_{κ} of constant scalar curvature κ, in the presence of a uniform external constant magnetic field of magnitude $v>0$ directed orthogonally, is described by the Landau Hamiltonian $\mathbb{L}_{\kappa}^{v}[2,5,6]$ given explicitly in z-complex notation by

$$
\begin{equation*}
\mathbb{L}_{\kappa}^{v}=-\left(1+\kappa|z|^{2}\right)\left\{\left(1+\kappa|z|^{2}\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}+v\left(z \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial \bar{z}}\right)\right\}+v^{2}|z|^{2} . \tag{1}
\end{equation*}
$$

The above Landau Hamiltonians \mathbb{L}_{κ}^{v} (or Maass Laplacians) have been extensively studied in the physics and mathematics literature by many authors using different approaches; see, for example, $[2,6,9,10]$. They can be realized as Schrödinger operators by considering

$$
\begin{equation*}
\mathbb{L}_{\kappa}^{\nu}=\left(d+\mathrm{i} v \operatorname{ext}\left(\theta_{\kappa}\right)\right)^{*}\left(d+\mathrm{i} \nu \operatorname{ext}\left(\theta_{\kappa}\right)\right) \tag{2}
\end{equation*}
$$

acting on functions, with $\left[\operatorname{ext}\left(\theta_{\kappa}\right) f\right](z):=f(z) \theta_{\kappa}(z)$ and where the differential 1-form θ_{κ} is the gauge vector potential given explicitly by

$$
\theta_{\kappa}(z)=\frac{\mathrm{i}(\bar{z} \mathrm{~d} z-z \mathrm{~d} \bar{z})}{1+\kappa|z|^{2}} .
$$

Then, it is clear that the usual Landau Hamiltonian $\mathbb{L}^{\nu}=\mathbb{L}_{0}^{v}$ on $\mathbb{R}^{2}=\mathbb{C}$ given by

$$
\begin{equation*}
\mathbb{L}^{\nu}=-\left\{\frac{\partial^{2}}{\partial z \partial \bar{z}}+v\left(z \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial \bar{z}}\right)-v^{2}|z|^{2}\right\}, \tag{3}
\end{equation*}
$$

can be recovered formally as a limit of the unbounded operators \mathbb{L}_{κ}^{v} when $\kappa \rightarrow 0$.
Thus the problem of connecting the spectral properties of the Landau Hamiltonian \mathbb{L}^{v} on \mathbb{C} as a limit of those on the curved spaces follows. This was first analysed by Comtet in [3]. He had shown in particular that on the Poincaré upper half plane $\mathcal{P}=\left\{(x, y) \in \mathbb{R}^{2} ; y>0\right\}$ endowed with the scaled hyperbolic metric whose negative constant scalar curvature is $-1 / \rho^{2}$, the spectrum of the associated Landau Hamiltonian given by

$$
\mathbb{L}^{\nu}(\rho)=-\left\{\frac{y^{2}}{\rho^{2}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)-2 \mathrm{i} v y \frac{\partial}{\partial x}-v^{2} \rho^{2}\right\}
$$

gives rise, when $\rho \rightarrow \infty$, to the well-known Landau energy levels $v(2 m+1), m=0,1, \ldots$, that constitute the L^{2}-point spectrum of the usual Landau Hamiltonian \mathbb{L}^{v} on $L^{2}\left(\mathbb{R}^{2} ; \mathrm{d} x \mathrm{~d} y\right)$. Since then many authors have been interested. For the hyperbolic disc D_{ρ} of radius $\rho>0$ the situation is pretty similar since the above Landau Hamiltonian $\mathbb{L}^{\nu}(\rho)$ is unitary equivalent to \mathbb{L}_{κ}^{v}, (1), on D_{ρ} with $\kappa=-1 / \rho^{2}$, via the Cayley transform $w \mapsto z=\rho(w-i) /(w+i)$. The generalization to higher dimensions, i.e., the complex Bergman ball \mathbb{B}_{ρ}^{n} is presented in [7]. For the compact partner of D_{ρ}, i.e., the sphere $S_{\rho}^{2} \subset \mathbb{R}^{3}$ whose positive constant scalar curvature is $+1 / \rho^{2}$, one can refer to [8].

In this paper, interested by a similar problem, we study the Euclidean limit of the L^{2} spectral properties of the Pauli Hamiltonian \mathbb{P}_{κ}^{v} on the constant curvature Riemann surfaces M_{κ} (see (7) below). For the flat case $(\kappa=0)$, the Pauli Hamiltonian $\mathbb{P}^{\nu}=\mathbb{P}_{0}^{\nu}$ that describes a non-relativistic spin particle, acting on the two-component spinor $\binom{\varphi}{\chi}$, is known to be given explicitly by

$$
\mathbb{P}^{\nu}=\left(\begin{array}{cc}
\mathbb{L}^{\nu} & 0 \tag{4}\\
0 & \mathbb{L}^{\nu}
\end{array}\right)-v\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Therefore, the study of the L^{2}-spectral properties of \mathbb{P}^{ν} reduces further to the usual scalar Landau Hamiltonian $\mathbb{L}^{\nu}[9,1,4]$. Such a Pauli Hamiltonian on $\mathbb{R}^{2}=\mathbb{C}$ can also be realized, such as the Landau Hamiltonian (2), as a second-order differential operator acting on differential 1-forms $\omega=\varphi \mathrm{d} z+\chi \mathrm{d} \bar{z}$ of \mathbb{C} through

$$
\begin{equation*}
\mathbb{P}^{\nu}=(d+\mathrm{i} v \operatorname{ext}(\theta))^{*}(d+\mathrm{i} v \operatorname{ext}(\theta))+(d+\mathrm{i} v \operatorname{ext}(\theta))(d+\mathrm{i} v \operatorname{ext}(\theta))^{*}, \tag{5}
\end{equation*}
$$

with $\theta=\mathrm{i}(\bar{z} \mathrm{~d} z-z \mathrm{~d} \bar{z})$ and $\operatorname{ext}(\theta) \omega=\theta \wedge \omega$. See also [14] for details on a similar realization. Let us mention here that the Pauli Hamiltonian \mathbb{P}_{v} derived in (5) and given explicitly in (4) is equivalent to the standard magnetic Schrödinger operator given by

$$
(-\mathrm{i} \nabla-\vec{A})^{2}+\vec{\beta} \cdot \vec{B}
$$

where $\vec{A}=2 \nu(y,-x, 0)=v \theta$ is the vector potential, $\vec{B}=\nabla \times \vec{A}=(0,0,-4 \nu)$ is the associated magnetic field and $\vec{\beta}=(0,0, \pm 1)$ is the spin direction.

Then, to extend the notion of the Pauli Hamiltonian to any Riemann surface M_{κ}, one can consider again (5) with θ_{κ} instead of θ. This will be considered as a geometrical realization of the Pauli Hamiltonians on constant curvature Riemann surfaces. The concrete study of the L^{2}-spectral properties such as the L^{2}-eigenvalues and the explicit expressions of the associated L^{2}-eigenforms as well as their asymptotics, when $\kappa \rightarrow 0$, are so obtained by reducing further to a system of two Landau Hamiltonians (lemma 2). This is possible thanks to the explicit expression in z-complex notation of \mathbb{P}_{k}^{v} established in theorem 1 .

Also, we have to show that for every fixed $(z, w) \in \mathbb{C} \times \mathbb{C}$ the L^{2}-eigenprojector kernel $\mathcal{K}_{\kappa ; l}^{\nu}(z, w)$ (reproducing kernel) of the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$ on M_{κ}, for κ small enough, converges pointwise to the L^{2}-eigenprojector kernel $\mathcal{K}_{l}^{\nu}(z, w)$ of the Pauli Hamiltonian \mathbb{P}^{v} on \mathbb{C} (see theorem 4). This can give, somehow, a justification of the formal limit of \mathbb{P}_{κ}^{v} (or resp. $\mathbb{L}_{\kappa}^{\nu}$) to \mathbb{P}^{ν} (resp. \mathbb{L}^{ν}) when $\kappa \rightarrow 0$. We will carry out our study for the three models of simply connected Riemann surfaces with constant scalar curvature in an unified manner as in [5] or [12].

Let us note here that one cannot use perturbative theory theorems to obtain the above results as done in [13]; the situation here is quite different.

The paper is structured as follows. In section 2, we fix notation, realize the Pauli Hamiltonians on M_{κ}, as second-order differential operators on differential 1-forms, and give their explicit expressions in z-complex notation (theorem 1) as well as their invariance property. In section 3, we provide concrete description of their L^{2}-eigenforms, while in section 4, we give the explicit closed formulae for the L^{2}-eigenprojector kernels of their corresponding L^{2}-eigenspaces (see theorem 3). The asymptotic of such L^{2}-eigenprojector kernels, when $\kappa \rightarrow 0$ is proved in section 5. In section 6, we present some related remarks. We conclude with an appendix in which we give the proofs of theorem 1 and proposition 4.

2. Pauli Hamiltonians on constant curvature Riemann surfaces

Let M_{κ} be a simply connected Riemann surface with constant scalar curvature $\kappa\left(\kappa=\varepsilon / \rho^{2}\right.$ with $\varepsilon=\mp 1$ fixed and $\rho \in] 0,+\infty]$ with the convention that $\kappa=0$ whenever $\rho=+\infty$). Then, it is known (Riemann uniformization theorem) that M_{κ} can be realized as the disc, the plane or the sphere in \mathbb{R}^{3}. That is

$$
M_{\kappa}= \begin{cases}D_{\rho}=\{z \in \mathbb{C} ;|z|<\rho\} & \text { for } \kappa=-\frac{1}{\rho^{2}}<0 \\ \mathbb{C} & \text { for } \kappa=0 \\ S_{\rho}^{2}=\mathbb{C} \cup\{\infty\} & \text { for } \kappa=+\frac{1}{\rho^{2}}>0\end{cases}
$$

We equip M_{κ} with the Hermitian metric $\mathrm{d} s_{\kappa}^{2}$ given by

$$
\mathrm{d} s_{\kappa}^{2}:=\frac{4}{\left(1+\kappa|z|^{2}\right)^{2}} \mathrm{~d} z \otimes \mathrm{~d} \bar{z}
$$

and let θ_{κ} and $\mathrm{d} \mu_{\kappa}$ be the associated real differential 1-form (a gauge vector potential) and the volume measure on M_{κ} given respectively by

$$
\begin{equation*}
\theta_{\kappa}(z)=\frac{\mathrm{i}(\bar{z} \mathrm{~d} z-z \mathrm{~d} \bar{z})}{1+\kappa|z|^{2}} \quad \text { and } \quad \mathrm{d} \mu_{\kappa}(z)=\frac{4 \mathrm{~d} m(z)}{\left(1+\kappa|z|^{2}\right)^{2}} \tag{6}
\end{equation*}
$$

where $\mathrm{d} m$ denotes the usual Lebesgue measure on M_{κ}.
Next, for $v \in \mathbb{R}$, we denote by $\nabla_{\theta_{\kappa}}^{v}$ the first-order differential operator acting on differential p-forms of M_{κ} by $\nabla_{\theta_{\kappa}}^{v}:=d+\mathrm{i} v\left(\operatorname{ext} \theta_{\kappa}\right)$. Here d is the usual exterior derivative and $\operatorname{ext} \theta_{\kappa}$ is the operator of exterior left multiplication by θ_{κ}, i.e., $\operatorname{ext}\left(\theta_{\kappa}\right) \omega=\theta_{\kappa} \wedge \omega$ for all differential p-form ω. By $\left(\nabla_{\theta_{k}}^{v}\right)^{*}$ let us denote the formal adjoint of $\nabla_{\theta_{k}}^{\nu}$ with respect to the Hermitian scalar product induced by the Hermitian metric $\mathrm{d} s_{\kappa}^{2}$.

Definition. We call the Pauli Hamiltonian associated with the vector potential θ_{κ} on M_{κ} the following second-order differential operator $\mathbb{P}_{\kappa}^{\nu}$ acting on differential 1-forms of M_{κ} by

$$
\begin{equation*}
\mathbb{P}_{\kappa}^{v}:=\left(\nabla_{\theta_{\kappa}}^{v}\right)^{*} \nabla_{\theta_{\kappa}}^{v}+\nabla_{\theta_{\kappa}}^{v}\left(\nabla_{\theta_{\kappa}}^{v}\right)^{*} \tag{7}
\end{equation*}
$$

The above realization (7) allows one to show easily that such Pauli Hamiltonians \mathbb{P}_{κ}^{v} are invariant by the action of the group of motions
$G_{\kappa}:=\left\{g=\left(\begin{array}{cc}a & b \\ -\kappa \bar{b} & \bar{a}\end{array}\right)=g(\kappa) \in M_{2,2}(\mathbb{C}) ;|a|^{2}+\kappa|b|^{2}=1\right.$ and $\lim _{\kappa \rightarrow 0} g(\kappa)$ exists $\}$
acting on M_{κ} via the transitive action defined by $g \cdot z=(a z+b)(-\kappa \bar{b} z+\bar{a})^{-1}$ for $g \in G_{\kappa}$. More precisely, let T_{κ}^{ν} be the unitary projective representation of G_{κ} on the Hilbert space $\mathcal{H}_{\kappa}:=L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} z \oplus L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} \bar{z}$ defined by
$\left[T_{\kappa}^{\nu}(g) \omega\right](z):=j_{\kappa}^{\nu}(g, z) g^{*}(\omega)(z), \quad$ with $\quad j_{\kappa}^{\nu}(g, z):=\left(\frac{1+\kappa \bar{z} g^{-1} \cdot 0}{1+\kappa z \overline{g^{-1} \cdot 0}}\right)^{\frac{\nu}{\kappa}}$,
where $g^{*} \omega$ is the pull back of the differential form ω by the biholomorphic mapping $g: z \mapsto g \cdot z$ for fixed $g \in G_{\kappa}$, then we have

Proposition 1 [7] (Invariance property). The Pauli Hamiltonians \mathbb{P}_{κ}^{v} are invariant by the projective representation T_{κ}^{v} of the group G_{κ} on M_{κ}. That is, for all $g \in G_{\kappa}, \omega \in \mathcal{H}_{\kappa}$ and $z \in M_{\kappa}$, we have

$$
T_{\kappa}^{v}(g)\left[\mathbb{P}_{\kappa}^{v}(\omega)\right](z)=\mathbb{P}_{\kappa}^{v}\left[T_{\kappa}^{v}(g) \omega\right](z)
$$

Proof. First let us note that if the unitary transformation T_{κ}^{v} commutes with $\nabla_{\theta_{\kappa}}^{v}$ then it commutes also with $\left(\nabla_{\theta_{k}}^{\nu}\right)^{*}$ and so the assertion of the proposition follows. The identity $T_{\kappa}^{\nu}(g) \nabla_{\theta_{\kappa}}^{v}=\nabla_{\theta_{\kappa}}^{v} T_{\kappa}^{\nu}(g)$, for all $g \in G_{\kappa}$, holds by the use of the known facts $\mathrm{d} g^{*} \omega=g^{*} \mathrm{~d} \omega$ and $g^{*}(\theta \wedge \omega)=g^{*} \theta \wedge g^{*} \omega$ combined with the following lemma:

Lemma 1. For $g \in G_{\kappa}$ and $z \in M_{\kappa}$, we have

$$
\left[T_{\kappa}^{\nu}(g)\left(\theta_{\kappa}\right)\right](z)=j_{\kappa}^{\nu}(g, z) \theta_{\kappa}(z)-\frac{\mathrm{i}}{\kappa} d\left[j_{\kappa}^{\nu}(g, z)\right] .
$$

Now, to describe the concrete spectral properties of such Pauli Hamiltonians \mathbb{P}_{κ}^{v} we need first to have their explicit expressions. Precisely, we have

Theorem 1. The Pauli Hamiltonian \mathbb{P}_{κ}^{v} as defined in (7) acts on smooth differential 1 -forms $\omega=f \mathrm{~d} z+g \mathrm{~d} \bar{z}$, identified to $\binom{f}{g}$, through the following explicit 2×2 matrix differential operator given by

$$
\mathbb{P}_{\kappa}^{\nu}=\left(\begin{array}{cc}
\mathbb{L}_{\kappa}^{\nu, \nu-2 \kappa} & 0 \tag{8}\\
0 & \mathbb{L}_{\kappa}^{v+2 \kappa, v}
\end{array}\right)-v\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

where $\mathbb{L}_{\kappa}^{\alpha, \beta}, \alpha, \beta \in \mathbb{R}$, is the second-order differential operator acting on scalar functions on M_{κ} by

$$
\mathbb{L}_{\kappa}^{\alpha, \beta}=-\left(1+\kappa|z|^{2}\right)\left\{\left(1+\kappa|z|^{2}\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}+\alpha z \frac{\partial}{\partial z}-\beta \bar{z} \frac{\partial}{\partial \bar{z}}\right\}+\alpha \beta|z|^{2}
$$

The proof of theorem 1 is technical and will be given in appendix A.
Remark 1. Using the obtained explicit formula of the Pauli Hamiltonian, it can be shown that \mathbb{P}_{κ}^{v} is an elliptic operator, densely defined on the Hilbert space $\mathcal{H}_{\kappa}=L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} z \oplus$ $L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} \bar{z}$ and admits unique self-adjoint realization on \mathcal{H}_{κ} that we denote also by \mathbb{P}_{κ}^{v}.

3. Concrete description of the L^{2}-eigenforms of $\mathbb{P}_{\kappa}^{\nu}$

In this section we are concerned with the concrete description of the L^{2}-eigenforms $\omega \in \mathcal{H}_{\kappa}$ of the Pauli Hamiltonian \mathbb{P}_{κ}^{v}. To do this we begin first by a brief review of some well-established L^{2}-spectral properties of the Landau Hamiltonians $\mathbb{L}_{\kappa}^{\tilde{v}}, \tilde{v}>0$, on $L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)=\left\{f: M_{\kappa} \longrightarrow \mathbb{C} ; \int_{M_{\kappa}}|f(z)|^{2} \mathrm{~d} \mu_{\kappa}<\infty\right\}$.

3.1. L^{2}-spectral properties of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\tilde{N}}}$

For $\tilde{v}>0$ let $\mathbb{L}_{\kappa}^{\tilde{v}}$ be the usual Landau Hamiltonian on the Hilbert space $L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)$ defined by
$\mathbb{L}_{\kappa}^{\tilde{\nu}}=-\left(1+\kappa|z|^{2}\right)\left\{\left(1+\kappa|z|^{2}\right) \frac{\partial^{2}}{\partial z \partial \bar{z}}+\tilde{v}\left(z \frac{\partial}{\partial z}-\bar{z} \frac{\partial}{\partial \bar{z}}\right)\right\}+\tilde{v}^{2}|z|^{2}=: \mathbb{L}_{\kappa}^{\tilde{,}, \tilde{\nu}}$
that we can realize it also as $\mathbb{L}_{\kappa}^{\tilde{v}}=\left(\nabla_{\theta_{k}}^{\tilde{v}}\right)^{*} \nabla_{\theta_{\kappa}}^{\tilde{v}}$ acting on scalar functions on M_{κ}. Thus, let us consider the following eigenvalue problem:

$$
\begin{equation*}
\mathbb{L}_{\kappa}^{\tilde{v}} \phi=\mu \phi, \quad \phi \in L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right), \quad \mu \in \mathbb{C} \tag{10}
\end{equation*}
$$

Then, we have
Proposition 2. (i) The discrete part $\operatorname{Spec}_{d}\left(\mathbb{L}_{\kappa}^{\tilde{v}}\right)$ of the spectrum of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ on $L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)$ is given by
$\operatorname{Spec}_{d}\left(\mathbb{L}_{\kappa}^{\tilde{v}}\right)=\left\{\mu_{\kappa}(m):=\tilde{v}(2 m+1)+\kappa m(m+1), \quad m \in \mathbb{Z}^{+}, \quad 0 \leqslant m<\frac{2 \tilde{v}+\kappa}{|\kappa|-\kappa}\right\}$
with the conditions $2 \tilde{v}+\kappa>0$ for $\kappa \leqslant 0$ and $2 \tilde{v} / \kappa \in \mathbb{Z}^{+}$for $\kappa>0$.
(ii) A smooth function $\phi \in L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)$ is a solution of (10) if and only if $\mu=\mu_{\kappa}(m)$. In this case, ϕ is expanded explicitly in terms of the Gauss hypergeometric function ${ }_{2} F_{1}(a, b ; c ; x)$ as follows

$$
\begin{equation*}
\phi(z)=\sum_{p=0}^{+\infty} \sum_{q=0}^{m} a_{p q}^{m} \phi_{\kappa, m}^{\tilde{\sim}, p q}(z), \tag{11}
\end{equation*}
$$

where
$\phi_{\kappa, m}^{\tilde{\nu}, p q}(z):=\left(1+\kappa|z|^{2}\right)^{-\frac{\tilde{v}}{\kappa}-m}{ }_{2} F_{1}\left(q-m, p-m-\frac{2 \tilde{v}}{\kappa} ; p+q+1 ;-\kappa|z|^{2}\right) z^{p} \bar{z}^{q}$
for $p, q \in \mathbb{Z}^{+}$such that $p q=0$. The complex numbers $a_{p q}^{m}$ satisfies the following growth condition:

$$
\begin{equation*}
\sum_{p=0}^{+\infty} \frac{m!(p!)^{2}}{2(p+m)!} \cdot\left(\frac{|\kappa|^{-p} \Gamma\left(\frac{2 \tilde{v}}{\kappa}-m\right)}{(2 \tilde{v}+\kappa(2 m+1)) \Gamma\left(\frac{2 \tilde{v}}{\kappa}+p-m\right)}\right)\left|a_{p 0}^{m}\right|^{2}<+\infty . \tag{13}
\end{equation*}
$$

Proof. The result in (i) is well known in the literature of mathematics and physics as Landau energy levels. See for instance [2, 3, 6]. For the first part of (ii) (i.e., (11), (12)); the reader can refer to [3] and [11] for example. The growth condition (13) for the coefficients $a_{p q}^{m}$ is given in [7].
Remark 2. The continuous part $\operatorname{Spec}_{c}\left(\mathbb{L}_{\kappa}^{\tilde{v}}\right)$ of the spectrum of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{v}}$ on $L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)$ is empty for $\kappa \geqslant 0$. For the disc D_{ρ} of radius ρ (i.e., $\kappa=\frac{-1}{\rho^{2}}<0$), it is given by

$$
\begin{equation*}
\operatorname{Spec}_{c}\left(\mathbb{L}_{\kappa}^{\tilde{v}}\right)=\left[-\frac{\kappa}{4}-\frac{v^{2}}{\kappa},+\infty\left[=\left[\frac{1}{4 \rho^{2}}+v^{2} \rho^{2},+\infty[.\right.\right.\right. \tag{14}
\end{equation*}
$$

3.2. L^{2}-eigenforms of the Pauli Hamiltonian \mathbb{P}_{κ}^{v}

We fix $v>0$ and consider the following eigenvalue problem for the Pauli Hamiltonian \mathbb{P}_{κ}^{v} on $\mathcal{H}_{\kappa}=L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} z \oplus L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} \bar{z}:$

$$
\begin{equation*}
\mathbb{P}_{\kappa}^{\nu} \omega=\lambda \omega, \quad \omega=f \mathrm{~d} z+g \mathrm{~d} \bar{z} \in \mathcal{H}_{\kappa}, \quad \lambda \in \mathbb{C} . \tag{15}
\end{equation*}
$$

According to the explicit expression of $\mathbb{P}_{\kappa}^{\nu}$ given in theorem 1, the above equation (15) reduces further to that of the scalar Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\mathcal{L}}}$. Namely, we have

Lemma 2. Let

$$
\mathbf{S}_{\kappa}=\left(\begin{array}{cc}
1+\kappa|z|^{2} & 0 \\
0 & 1+\kappa|z|^{2}
\end{array}\right)
$$

Then

$$
\mathbb{P}_{\kappa}^{v}=\mathbf{S}_{\kappa}^{-1}\left\{\left(\begin{array}{cc}
\mathbb{L}_{\kappa}^{v-\kappa} & 0 \tag{16}\\
0 & \mathbb{L}_{\kappa}^{v+\kappa}
\end{array}\right)-\left(\begin{array}{cc}
v-\kappa & 0 \\
0 & -(\nu+\kappa)
\end{array}\right)\right\} \mathbf{S}_{\kappa}
$$

Proof. By considering the unitary operator of multiplication by $\left(1+\kappa|z|^{2}\right)$ from $L^{2}\left(M_{\kappa} ; \mathrm{d} m\right)$ onto $L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)$, i.e.,

$$
\begin{aligned}
& L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \longrightarrow L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right) \\
& f \longmapsto\left(1+\kappa|z|^{2}\right) f=: \tilde{f},
\end{aligned}
$$

and using direct computation we see that for arbitrary $\alpha, \beta \in \mathbb{R}$, we have

$$
\begin{equation*}
\mathbb{L}_{\kappa}^{\alpha, \beta}(f)=\left(1+\kappa|z|^{2}\right)^{-1} \mathbb{L}_{\kappa}^{\frac{\alpha+\beta}{2}}\left[\left(1+\kappa|z|^{2}\right) f\right] \tag{17}
\end{equation*}
$$

Hence, result (16) holds as immediate consequence of theorem 1 and (17).
Therefore, equation (15) becomes equivalent to the following system:

$$
\left\{\begin{array}{l}
\mathbb{L}_{\kappa}^{\nu_{1}} \tilde{f}=\left(\lambda+4 \nu_{1}\right) \tilde{f} \tag{18}\\
\mathbb{L}_{\kappa}^{\nu_{2}} \tilde{g}=\left(\lambda-4 \nu_{2}\right) \tilde{g}
\end{array} ; ; \quad \tilde{f}, \tilde{g} \in L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)\right.
$$

with $\nu_{1}=v-\kappa$ and $\nu_{2}=v+\kappa$. Thus, using (i) of proposition 2 , we get
Proposition 3. The L^{2}-eigenvalues of the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$ acting on $\mathcal{H}_{\kappa}^{+}=$ $L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} z$ are given by

$$
\begin{equation*}
\lambda_{\kappa}^{+}(l)=2 v l+\kappa l(l-1), \quad l=0,1,2, \ldots, \tag{19}
\end{equation*}
$$

with $0 \leqslant l<v \rho^{2}+\frac{1}{2}$ for the disc D_{ρ} and $2 v \rho^{2}=2,3, \ldots$, for S_{ρ}^{2}. Whereas, the L^{2} eigenvalues of $\mathbb{P}_{\kappa}^{\nu}$ acting on $\mathcal{H}_{\kappa}^{-}=L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} \bar{z}$ are given by

$$
\begin{equation*}
\lambda_{\kappa}^{-}\left(l^{\prime}\right)=2 v\left(l^{\prime}+1\right)+\kappa\left(l^{\prime}+1\right)\left(l^{\prime}+2\right), \quad l^{\prime}=0,1,2, \ldots, \tag{20}
\end{equation*}
$$

with $0 \leqslant l^{\prime}<v \rho^{2}-\frac{3}{2}$ for D_{ρ} and $2 v \rho^{2}=1,2, \ldots$, for S_{ρ}^{2}.
Furthermore, if ∇_{α} is the first-order differential operator defined by

$$
\nabla_{\alpha}:=\left(1+\kappa|z|^{2}\right) \frac{\partial}{\partial z}+(\alpha+\kappa) \bar{z}, \quad \alpha \in \mathbb{R}
$$

then we have

Theorem 2. The differential form $f \mathrm{~d} z$ (resp. $g \mathrm{~d} \bar{z}$) is the solution of $\mathbb{P}_{\kappa}^{\nu} \omega=\lambda \omega$ in \mathcal{H}_{κ}^{+}(resp. in \mathcal{H}_{κ}^{-}) if and only if $\lambda=\lambda_{\kappa}^{+}(l)$ (resp. $\lambda=\lambda_{\kappa}^{-}\left(l^{\prime}\right)$) and f (resp. g) can be expanded in $L^{2}(\mathbb{C} ; \mathrm{d} m)$ as follows
$f(z)=\left(1+\kappa|z|^{2}\right)^{-1} \nabla_{v-\kappa} \circ \nabla_{v} \circ \cdots \circ \nabla_{v+(l-2) \kappa}\left[\left(1+\kappa|z|^{2}\right)^{-\frac{v}{\kappa}-l+1} h(z)\right]$
(resp. $\left.g(z)=\left(1+\kappa|z|^{2}\right)^{-1} \nabla_{v+\kappa} \circ \nabla_{v+2 \kappa} \circ \cdots \circ \nabla_{v+l^{\prime} \kappa}\left[\left(1+\kappa|z|^{2}\right)^{-\frac{v}{\kappa}-l^{\prime}-1} h(z)\right]\right)$,
where $h(z)=\sum_{p=0}^{+\infty} a_{p} z^{p}$ is an arbitrary holomorphic function on M_{κ} whose coefficients a_{p} satisfy the growth condition given in (13) for $\tilde{v}=v-\kappa$ (resp. $\tilde{v}=v+\kappa)$.

Proof. Let $f \mathrm{~d} z \in \mathcal{H}_{\kappa}^{+}$be a solution of $\mathbb{P}_{\kappa}^{v}(f \mathrm{~d} z)=\lambda_{\kappa}^{+}(l) f \mathrm{~d} z$. Then, the function $\tilde{f}=\left(1+\kappa|z|^{2}\right) f \in L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)$ is a L^{2}-eigenfunction of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ ($\tilde{v}=v-\kappa$) with $\mu_{\kappa}(l)$ as eigenvalue. Hence, \tilde{f} can be expanded as in (11)-(13).

To conclude for theorem 2, it suffices to see that every component $\phi_{k, l}^{\nu, p q}$ can be written in terms of the first-order differential operator ∇_{α}. We claim

Lemma 3. Set $\nabla_{\tilde{V}, m}:=\nabla_{\tilde{v}} \circ \nabla_{\tilde{\mathcal{V}}+\kappa} \circ \cdots \circ \nabla_{\tilde{v}+(m-1) \kappa}$. Then, in terms of the Gauss hypergeometric function ${ }_{2} F_{1}$, we have

$$
\begin{aligned}
& \nabla_{\tilde{v}, m}\left[\left(1+\kappa|z|^{2}\right)^{-\frac{\tilde{v}}{\kappa}} z^{p}\right]=C_{\kappa}^{\tilde{v}}(p, m)\left(1+\kappa|z|^{2}\right)^{-\frac{\tilde{v}}{\kappa}-m}|z|^{|m-p|} \mathrm{e}^{-\mathrm{i}(m-p) \arg z} \\
& \quad \times{ }_{2} F_{1}\left(-\operatorname{Min}(p, m), \operatorname{Max}(p-m, 0)-m-\frac{2 \tilde{v}}{\kappa} ;|m-p|+1 ;-\kappa|z|^{2}\right)
\end{aligned}
$$

Whose proof can be handled by induction using some known transformations on hypergeometric functions.

Remark 3. Here we have given the result in a unified manner for both positive and negative constant curvature κ, which recovers also the flat case $(\kappa=0)$. In the particular case of the Pauli Hamiltonian on the sphere $S_{\rho}^{2}\left(\kappa=+1 / \rho^{2}\right)$, the result of theorem 2 can also be deduced from theorem 3 of [6].

4. Explicit formulae for the L^{2}-eigenprojector kernels of $\mathbb{P}_{\kappa}^{\nu}$

Fix $v>0$ and let $A_{l, l^{\prime}}^{2, \nu}\left(\mathbb{P}_{\kappa}^{v}\right)$ be the L^{2}-eigenspace of the Pauli Hamiltonian \mathbb{P}_{κ}^{v} associated with the L^{2}-eigenvalue $\lambda=\lambda_{\kappa}\left(l, l^{\prime}\right)$. That is,

$$
A_{l, l^{\prime}}^{2, v}\left(\mathbb{P}_{\kappa}^{v}\right)=\left\{\omega=\binom{f}{g} \in L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \oplus L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) ; \mathbb{P}_{\kappa}^{\nu} \omega=\lambda_{\kappa}\left(l, l^{\prime}\right) \omega\right\}
$$

Then, the Hilbert space $A_{l, l^{\prime}}^{2, v}\left(\mathbb{P}_{\kappa}^{v}\right)$ admits a L^{2}-eigenprojector kernel (reproducing kernel) $\mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w)$, i.e., such that for all $\omega \in A_{l, l^{\prime}}^{2, \nu}\left(\mathbb{P}_{\kappa}^{v}\right)$ we have

$$
\omega(z)=\int_{M_{\kappa}} \mathcal{K}_{\kappa ; l, l^{\prime}}^{\nu}(z, w) \omega(w) \mathrm{d} \mu_{\kappa}(w)
$$

Moreover, it is given explicitly by the following:
Theorem 3. Fix $l, l^{\prime} \in \mathbb{Z}^{+}$such that $\lambda_{\kappa}^{+}(l)=\lambda_{\kappa}^{-}\left(l^{\prime}\right)=\lambda_{\kappa}\left(l, l^{\prime}\right)$. Then, the L^{2}-eigenprojector kernel $\mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w)$ of the L^{2}-eigenspace $A_{l, l^{\prime}}^{2, \nu}\left(\mathbb{P}_{\kappa}^{v}\right)$ is given by

$$
\mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w)=\left(\frac{1+\kappa|w|^{2}}{1+\kappa|z|^{2}}\right)\left(\begin{array}{cc}
\tilde{\mathcal{K}}_{\kappa, l}^{v-\kappa}(z, w) & 0 \\
0 & \tilde{\mathcal{K}}_{\kappa, l^{\prime}}^{v+\kappa}(z, w)
\end{array}\right),
$$

where $\tilde{\mathcal{K}}_{\kappa ; m}^{\tilde{v}}(z, w)$ is given explicitly by the following closed formula:

$$
\begin{align*}
\tilde{\mathcal{K}}_{\kappa ; m}^{\tilde{v}}(z, w)= & \frac{2 \tilde{v}+\kappa(2 m+1)}{\pi}\left(\frac{1+\kappa \bar{z} w}{1+\kappa z \bar{w}}\right)^{-\frac{\tilde{v}}{\kappa}} \\
& \times\left(\frac{|1+\kappa z \bar{w}|^{2}}{\left(1+\kappa|z|^{2}\right)\left(1+\kappa|w|^{2}\right)}\right)^{\frac{\bar{\delta}}{\kappa}+m}{ }_{2} F_{1}\left(-m,-\frac{2 \tilde{v}}{\kappa}-m ; 1 ;-\kappa \frac{|z-w|^{2}}{|1+\kappa z \bar{w}|^{2}}\right) . \tag{21}
\end{align*}
$$

Proof. In view of (18), we split the Hilbert space $A_{l, l^{\prime}}^{2, \nu}\left(\mathbb{P}_{\kappa}^{\nu}\right)$ in a direct sum as follows:

$$
A_{l, l^{\prime}}^{2, v}\left(\mathbb{P}_{\kappa}^{v}\right)=\left(1+\kappa|z|^{2}\right)^{-1} A_{\mu_{\kappa}^{+}(l)}^{2, v}\left(\mathbb{L}_{\kappa}^{v-\kappa}\right) \mathrm{d} z \oplus\left(1+\kappa|z|^{2}\right)^{-1} A_{\mu_{\kappa}^{-}\left(l^{\prime}\right)}^{2, v}\left(\mathbb{L}_{\kappa}^{v+\kappa}\right) \mathrm{d} \bar{z}
$$

where $A_{\mu_{\kappa}^{*}(m)}^{2, v}\left(\mathbb{L}_{\kappa}^{\tilde{v}}\right)\left(\subset L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)\right)$, for $\tilde{v}=v-\kappa$ and $m=l$ or $\tilde{v}=v+\kappa$ and $m=l^{\prime}$, is the L^{2}-eigenspace of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ associated with the Landau level $\mu_{\kappa}^{\bullet}(m)$ (with $\mu_{\kappa}^{+}(l)=\lambda_{\kappa}^{+}(l)+(v-\kappa)$ and $\left.\mu_{\kappa}^{-}\left(l^{\prime}\right)=\lambda_{\kappa}^{-}\left(l^{\prime}\right)-(v+\kappa)\right)$. Therefore, $A_{l, l^{\prime}}^{2, v}\left(\mathbb{P}_{\kappa}^{v}\right)$ admits a L^{2}-eigenprojector kernel $\mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w)$ which is equal to

$$
\mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w)=\frac{1}{\sqrt{2}}\left(1+\kappa|z|^{2}\right)^{-1}\left(\begin{array}{cc}
\tilde{\mathcal{K}}_{\kappa ; l}^{v-\kappa}(z, w) & 0 \\
0 & \tilde{\mathcal{K}}_{\kappa ; l^{\prime}}^{v+\kappa}(z, w)
\end{array}\right)\left(1+\kappa|w|^{2}\right),
$$

where $\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(z, w)$ is the L^{2}-eigenprojector kernel of the L^{2}-eigenspace $\widetilde{A}_{\mu_{\kappa}^{*}(m)}^{2, \tilde{v}}$ of $\mathbb{L}_{\kappa}^{\tilde{v}}$ associated with the Landau level $\tilde{v}(2 m+1)+\kappa m(m+1)$. Then, we need just to specify further $\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(z, w)$, which is given by the following well-established proposition.

Proposition 4. The L^{2}-eigenprojector kernel $\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(z, w)$ of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\mathcal{V}}}$ associated to the Landau level $\tilde{v}(2 m+1)+\kappa m(m+1)$ is given explicitly by

$$
\begin{align*}
\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(z, w)= & \frac{2 \tilde{v}+\kappa(2 m+1)}{\pi}\left(\frac{1+\kappa \bar{z} w}{1+\kappa z \bar{w}}\right)^{-\frac{\tilde{v}}{\kappa}} \\
& \times\left(\frac{|1+\kappa z \bar{w}|^{2}}{\left(1+\kappa|z|^{2}\right)\left(1+\kappa|w|^{2}\right)}\right)^{\frac{\tilde{v}}{\kappa}+m}{ }_{2} F_{1}\left(-m,-\frac{2 \tilde{v}}{\kappa}-m ; 1 ;-\kappa \frac{|z-w|^{2}}{|1+\kappa z \bar{w}|^{2}}\right) . \tag{22}
\end{align*}
$$

Thus, the proof of theorem 3 will be completed by proving (22) (for its proof see appendix B).

Remark 4. If $\lambda_{\kappa}^{+}(l) \neq \lambda_{\kappa}^{-}\left(l^{\prime}\right)$, we have to consider two cases. The case $\lambda_{\kappa}\left(l, l^{\prime}\right)=\lambda_{\kappa}^{+}(l) \neq$ $\lambda_{\kappa}^{-}\left(l^{\prime}\right)$, for which we have

$$
\mathcal{K}_{\kappa ; l}^{v}(z, w)=\left(\frac{1+\kappa|w|^{2}}{1+\kappa|z|^{2}}\right)\left(\begin{array}{cc}
\tilde{\mathcal{K}}_{\kappa ; l}^{v-\kappa}(z, w) & 0 \\
0 & 0
\end{array}\right)
$$

and the case $\lambda_{\kappa}\left(l, l^{\prime}\right)=\lambda_{\kappa}^{-}\left(l^{\prime}\right) \neq \lambda_{\kappa}^{+}(l)$, for which we have

$$
\mathcal{K}_{\kappa, l^{\prime}}^{\nu}(z, w)=\left(\frac{1+\kappa|w|^{2}}{1+\kappa|z|^{2}}\right)\left(\begin{array}{cc}
0 & 0 \\
0 & \tilde{\mathcal{K}}_{\kappa, l^{\prime}}^{\nu+\kappa}(z, w)
\end{array}\right) .
$$

Particularly, for the bottom eigenvalue 0 (corresponding to $\lambda_{\kappa}^{+}(0)=0$ for $l=0$), we have

$$
A_{0}^{2, v}\left(\mathbb{P}_{\kappa}^{\nu}\right)=\left\{\omega=\binom{f}{0} ; f \in L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) ; \mathbb{P}_{\kappa}^{v}(f \mathrm{~d} z)=0\right\}
$$

and the associated kernel function $\mathcal{K}_{\kappa, 0}^{v}(z, w)$ is given by

$$
\mathcal{K}_{\kappa, 0}^{v}(z, w)=\frac{2 v-\kappa}{\pi}\left(\frac{1+\kappa|w|^{2}}{1+\kappa|z|^{2}}\right)\left(\frac{|1+\kappa z \bar{w}|^{2}}{\left(1+\kappa|z|^{2}\right)\left(1+\kappa|w|^{2}\right)}\right)^{\frac{v}{\kappa}-1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

5. Euclidean limit

According to the above discussion, the following facts hold when $\kappa \rightarrow 0$ (i.e., when the radius ρ goes to $+\infty$).

Fact 1. The group of motions G_{κ} on M_{κ} converges to the affine group on the Euclidean plane $\mathbb{R}^{2}=\mathbb{C}$. More exactly, viewing the groups of motions $G_{\kappa}, \kappa<0, \kappa=0, \kappa>0$, as subspaces of $M_{2,2}(\mathbb{C})$, then for every fixed g_{0} in the affine group $G_{0}=\left\{\begin{array}{ll}a & b \\ 0 & \bar{a}\end{array}\right) \in M_{2,2}(\mathbb{C})$; $\left.|a|^{2}=1, b \in \mathbb{C}\right\}$, there exists a family $\left(g_{\kappa}\right)_{\kappa}$ depending smoothly on κ such that $g_{\kappa}=$ $\left(\begin{array}{ll}a(\kappa) & b(\kappa) \\ -\kappa \bar{b}(\kappa) & \bar{a}(\kappa)\end{array}\right) \in G_{\kappa}$ for every κ and $g_{0}=\lim _{\kappa \rightarrow 0} g_{\kappa}$. Conversely, let $\left(g_{\kappa}\right)_{\kappa}$ be such that $g_{\kappa} \in G_{\kappa}$ for every κ and $\lim _{\kappa \rightarrow 0} g_{\kappa}$ exists. Then, we have $\lim _{\kappa \rightarrow 0} g_{\kappa} \in G_{0}$. Further details can be found in [7] for a more general setting.
Fact 2. From (19) and (20), it is clear that the L^{2}-eigenvalues of the Pauli Hamiltonian \mathbb{P}_{κ}^{v} on M_{κ} converge to $2 v l, l=0,1, \ldots$, that constitute the point spectrum of \mathbb{P}^{v}, the Pauli Hamiltonian on the plane $\mathbb{R}^{2}=\mathbb{C}$. This is exactly Comtet's result [3] for the Landau Hamiltonian with $\kappa<0$.
Fact 3. The L^{2}-eigenfunctions $\phi_{\kappa, m}^{\tilde{\nu}, p q}(z)$ given in (12) associated with the L^{2}-eigenvalue $\mu_{\kappa}(m)=\tilde{v}(2 m+1)+\kappa m(m+1)$ and realized in lemma 3, up to a given multiplicative constant, as follows:

$$
\nabla_{\tilde{v}} \circ \nabla_{\tilde{\mathcal{V}}+\kappa} \circ \cdots \circ \nabla_{\tilde{\mathcal{V}}+(m-1) \kappa}\left[\left(1+\kappa|z|^{2}\right)^{-\frac{\tilde{v}}{\kappa}} z^{j}\right]
$$

gives rise, when κ tends to 0 and for every fixed $z \in \mathbb{C}$, to

$$
\lim _{\kappa \mapsto 0} \phi_{\kappa, m}^{\tilde{\tilde{r}, p q}}(z)=\left(\frac{\partial}{\partial z}+\nu \bar{z}\right)^{m}\left(\mathrm{e}^{-\nu|z|^{2}} z^{j}\right),
$$

which constitute an orthogonal basis of the L^{2}-eigenspace of the Landau Hamiltonian \mathbb{L}^{ν} for the flat case corresponding to the Landau level $\nu(2 m+1)=\lim _{\kappa \rightarrow 0} \mu_{\kappa}(m)$. They are expressed in terms of the confluent hypergeometric function ${ }_{1} F_{1}(a ; c ; x)$, up to a given multiplicative constant, as follows:

$$
\mathrm{e}^{-\nu|z|^{2}}|z|^{|p-m|} \mathrm{e}^{-\mathrm{i}(m-p) \arg z}{ }_{1} F_{1}\left(-\operatorname{Min}(m, p) ;|p-m|+1 ; 2 \nu|z|^{2}\right)
$$

Now, for the asymptotic of the L^{2}-eigenprojector kernels of $\mathbb{P}_{\kappa}^{\nu}$, we have the following main result.

Theorem 4. Fix $v>0$ and let $\kappa=\varepsilon / \rho^{2}$ for $\varepsilon=\mp 1$ and ρ varying such that $\rho^{2} \in(1 / 2 v) \mathbb{Z}^{+}$. Then, in the limit $\kappa \rightarrow 0$, the L^{2}-eigenprojector kernel $\mathcal{K}_{\kappa ; l, l^{\prime}}^{\nu}(z, w)$ of \mathbb{P}_{κ}^{v} converges pointwisely on $\mathbb{C} \times \mathbb{C}$ to the L^{2}-eigenprojector kernel of \mathbb{P}^{v} on \mathbb{C}.

Proof. Let us note first that for κ small enough the condition $2 \tilde{v}+\kappa>0$ in proposition 2 for $\kappa=-1 / \rho^{2}$ is always satisfied and the assumption $\lambda_{\kappa}^{+}(l)=\lambda_{\kappa}^{-}\left(l^{\prime}\right)$ in theorem 3 reads simply $l=l^{\prime}+1$, so that the L^{2}-eigenprojector kernel $\mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w)$ of the Pauli Hamiltonian \mathbb{P}_{κ}^{v} is well
defined for a fixed $(z, w) \in \mathbb{C} \times \mathbb{C}$. Then, keeping in mind the explicit formula of $\mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w)$ (see theorem 3), we get

$$
\lim _{\kappa \mapsto 0} \frac{(2 \tilde{v}+(2 m+1) \kappa)}{\pi}\left(\frac{1+\kappa \bar{z} w}{1+\kappa z \bar{w}}\right)^{-\frac{\tilde{y}}{\kappa}}=\frac{2 v}{\pi} \mathrm{e}^{\nu(z \bar{w}-\bar{z} w)}
$$

and

$$
\lim _{\kappa \rightarrow 0}\left(\frac{|1+\kappa z \bar{w}|^{2}}{\left(1+\kappa|z|^{2}\right)\left(1+\kappa|w|^{2}\right)}\right)^{\frac{\tilde{j}}{\kappa}+m}=\mathrm{e}^{-\nu|z-w|^{2}}
$$

for $\tilde{v}=v-\kappa$ or $v+\kappa$. Then, using the well-known fact

$$
\lim _{t \mapsto 0} F_{1}\left(a, b+t ; c ; \frac{x}{t}\right)={ }_{1} F_{1}(a ; c ; x),
$$

we conclude that

$$
\lim _{\kappa \mapsto 0}{ }_{2} F_{1}\left(-l,-\frac{2 \tilde{v}}{\kappa}-l ; 1 ;-\kappa \frac{|z-w|^{2}}{|1+\kappa z \bar{w}|^{2}}\right)={ }_{1} F_{1}\left(-l ; 1 ; 2 \nu|z-w|^{2}\right)
$$

and

$$
\lim _{\kappa \mapsto 0}{ }_{2} F_{1}\left(-l^{\prime},-\frac{2 \tilde{v}}{\kappa}-l^{\prime} ; 1 ;-\kappa \frac{|z-w|^{2}}{|1+\kappa z \bar{w}|^{2}}\right)={ }_{1} F_{1}\left(1-l ; 1 ; 2 v|z-w|^{2}\right)
$$

for $l=l^{\prime}+1$. Therefore, we have

$$
\begin{aligned}
\lim _{\kappa \mapsto 0} \mathcal{K}_{\kappa ; l, l^{\prime}}^{v}(z, w) & =\frac{2 v}{\pi} \mathrm{e}^{\nu(z \bar{w}-\bar{z} w)} \mathrm{e}^{-\nu|z-w|^{2}} \\
& \times\left(\begin{array}{cc}
{ }_{1} F_{1}\left(-l ; 1 ; 2 v|z-w|^{2}\right) & 0 \\
0 & { }_{1} F_{1}\left(1-l ; 1 ; 2 v|z-w|^{2}\right)
\end{array}\right) .
\end{aligned}
$$

Finally, note that the right-hand side is nothing but the L^{2}-eigenprojector kernel $\mathcal{K}_{0, l}^{v}(z, w)$ of the Pauli Hamiltonian \mathbb{P}^{ν} of the Euclidean plane \mathbb{C}. In fact, we have

Lemma 4. For $l=0$, the L^{2}-eigenprojector kernel of the L^{2}-eigenspace $A_{0}^{2, v}\left(\mathbb{P}^{\nu}\right)$ is given by

$$
\frac{2 v}{\pi} \mathrm{e}^{\nu(z \bar{w}-\bar{z} w)} \mathrm{e}^{-\nu|z-w|^{2}}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

For $l \neq 0$, the L^{2}-eigenprojector kernel of the L^{2}-eigenspace $A_{l}^{2, \nu}\left(\mathbb{P}^{\nu}\right)$ is given by
$\mathcal{K}_{0, l}^{v}(z, w)=\frac{2 v}{\pi} \mathrm{e}^{\nu(z \bar{w}-\bar{z} w)} \mathrm{e}^{-\nu|z-w|^{2}}\left(\begin{array}{cc}{ }_{1} F_{1}\left(-l ; 1 ; 2 v|z-w|^{2}\right) & 0 \\ 0 & { }_{1} F_{1}\left(1-l ; 1 ; 2 v|z-w|^{2}\right)\end{array}\right)$.

This finishes the proof of theorem 4.

6. Concluding remarks

In this paper, we have provided concrete spectral properties, such as the explicit formulae for the L^{2}-eigenforms and the L^{2}-eigenprojector kernels, of the Pauli Hamiltonians \mathbb{P}_{κ}^{v} on simply connected Riemann surfaces with constant scalar curvature $\kappa=\varepsilon / \rho^{2}$. Further, we have discussed their limits when $\kappa \rightarrow 0$ (i.e. $\rho \rightarrow+\infty$). This was possible thanks to the explicit expression of \mathbb{P}_{κ}^{v} (theorem 1). Below, we point out some related remarks.

In contrast to the case of the scalar Landau Hamiltonians $\mathbb{L}_{\kappa}^{\nu}$, the value 0 is an isolated L^{2} eigenvalue for the Pauli Hamiltonians $\mathbb{P}_{\kappa}^{\nu}$. The corresponding L^{2}-eigenspace reduces further
to $\operatorname{ker} \mathbb{P}_{\kappa}^{v}$ in \mathcal{H}_{κ}. More exactly, for the hyperbolic disc D_{ρ}, the corresponding L^{2}-eigenspace $\operatorname{ker} \mathbb{P}_{\kappa}^{\nu}$ given by

$$
\left\{\binom{f}{0} ; f(z)=\left(1-\left|\frac{z}{\rho}\right|^{2}\right)^{\nu \rho^{2}} \sum_{p=0}^{+\infty} a_{p} z^{p} \text { with } \sum_{p=0}^{+\infty} \frac{\rho^{2 p} p!\Gamma\left(2 v \rho^{2}+2\right)\left|a_{p}\right|^{2}}{\Gamma\left(2 v \rho^{2}+p+2\right)}<+\infty\right\}
$$

is isomorphic to the usual weighted Bergman Hilbert space of square integrable holomorphic functions on D_{ρ} with respect to the density $\left(1-\left|\frac{z}{\rho}\right|^{2}\right)^{2 \nu \rho^{2}-2} \mathrm{~d} m$. For S_{ρ}^{2}, the null space of the Pauli Hamiltonian is reduced essentially, up to the multiplicative function $\left(1+\left|\frac{z}{\rho}\right|^{2}\right)^{-v \rho^{2}}$, to the space of polynomial functions of degrees less than or equal to the integer $2 v \rho^{2}$. Therefore, it results that the formal limit of such Hilbert spaces, when $\rho \rightarrow+\infty$, gives rise to ker \mathbb{P}^{ν} which is isomorphic to the classical Bargmann-Fock space

$$
\left\{h: \mathbb{C} \rightarrow \mathbb{C}, \quad h \text { entire on } \mathbb{C} \text { and } \quad \int_{\mathbb{C}}|h(z)|^{2} \mathrm{e}^{-2 v|z|^{2}} \mathrm{~d} m(z)<+\infty\right\}
$$

Also, we note that the L^{2}-eigenvalues $\lambda_{\kappa}^{+}(l)$ and $\lambda_{\kappa}^{-}\left(l^{\prime}\right)$ of the Pauli Hamiltonian \mathbb{P}_{κ}^{v} occur with infinite multiplicities for $\kappa \leqslant 0$. For $\kappa=+1 / \rho^{2}>0$, they occur with finite degeneracies. More precisely, for the eigenvalue $2 v l+\kappa l(l-1)$, the multiplicity is $2 v \rho^{2}+2 l-1$ and for the eigenvalue $2 v(l+1)+\kappa(l+1)(l+2)$, the multiplicity is $2 v \rho^{2}+2 l+3$. Therefore, when the planar image is taken we recuperate the eigenvalues with their multiplicities.

We conclude this section by noting that under the assumptions $2 v \rho^{2}>3$ for the disc D_{ρ} and $2 \nu \rho^{2}=2,3, \ldots$, for S_{ρ}^{2}, the existence of a L^{2}-eigenform $\omega=f \mathrm{~d} z+g \mathrm{~d} \bar{z}$ with $f \neq 0$ and $g \neq 0$ is related to the existence of a solution $\left(l, l^{\prime}\right)$ of the following algebraic equation:

$$
\begin{equation*}
l\left(2 v \rho^{2}+1-l\right)=\left(l^{\prime}+1\right)\left(2 v \rho^{2}-2-l^{\prime}\right) \tag{23}
\end{equation*}
$$

It depends clearly on the value of $2 v \rho^{2}$. Thus, if $2 v \rho^{2}$ is irrational there is no solution of (23). Further, one can show that $\left(l, l^{\prime}\right)$ to be a solution for (23), we must have necessary $l^{\prime} \geqslant l$. So, $(l, l+s)$ for $s \in \mathbb{Z}^{+}$, is a solution if and only if $2 v \rho^{2}$ is rational such that $(2 l+s+1)(s+2)=2 v \rho^{2}(s+1)$. Note finally that such equation (23) reads simply $l=l^{\prime}+1$ for ρ large enough.

Acknowledgments

I am deeply indebted to Professor A Intissar for helpful comments and discussion on the subject. Also I would like to thank Professor Floyd L Williams for reading and improving the manuscript. Special thanks are addressed to Professor H Sami for financial support and encouragement.

Appendix A. Proof of theorem 1

We first fix further notation and recall some needed facts. For $p=0,1$ or 2 , let \mathcal{H}_{κ}^{p} denote the Hilbert space obtained as the completion of $\mathcal{C}_{c}^{\infty}\left(M_{\kappa} ; \Lambda^{p} M_{\kappa}\right)$, the space of \mathcal{C}^{∞}-differential p-forms with compact support in M_{κ}, with respect to the natural Hermitian scalar product induced from the metric $\mathrm{d} s_{\kappa}^{2}$ and defined by

$$
\begin{equation*}
(\alpha, \beta)_{p}:=\int_{M_{\kappa}} \alpha \wedge \star \beta, \quad \alpha, \beta \in \mathcal{C}_{c}^{\infty}\left(M_{\kappa} ; \Lambda^{p} M_{\kappa}\right) \tag{A.1}
\end{equation*}
$$

In the integrand, \star is the Hodge star operator canonically associated with $\mathrm{d} s_{\kappa}^{2}$ acting on differential forms of M_{κ} as follows
$\star 1=2 \mathrm{i} \frac{\mathrm{d} z \wedge \mathrm{~d} \bar{z}}{\left(1+\kappa|z|^{2}\right)^{2}} ; \quad \star \mathrm{d} z=\mathrm{i} \mathrm{d} \bar{z} ; \quad \star \mathrm{d} \bar{z}=-\mathrm{i} \mathrm{d} z ; \quad \star(\mathrm{d} z \wedge \mathrm{~d} \bar{z})=\frac{\mathrm{i}}{2}\left(1+\kappa|z|^{2}\right)^{2}$.
At this level let mention that the adjoints d^{*} of d and $\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}$ of $\operatorname{ext} \theta_{\kappa}$, with respect to the Hermitian scalar product (A.1), are given respectively by

$$
d^{*}=-\star d \star \quad \text { and } \quad\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}=\star\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right) \star
$$

Then, for $p=0$, the space \mathcal{H}_{κ}^{0} is nothing but the usual Hilbert space of square integrable complex-valued functions on M_{κ} with respect to the volume measure $\mathrm{d} \mu_{\kappa}$, i.e., $\mathcal{H}_{\kappa}^{0}=$ $L^{2}\left(M_{\kappa} ; \mathrm{d} \mu_{\kappa}\right)$. For $p=1$, the Hilbert space \mathcal{H}_{κ}^{1} of L^{2}-differential 1-forms $\omega=f \mathrm{~d} z+g \mathrm{~d} \bar{z}$ consists of the couple of functions (f, g) on M_{κ} that are square integrables with respect to the Lebesgue measure $\mathrm{d} m$. That is

$$
\mathcal{H}_{\kappa}^{1}=L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} z \oplus L^{2}\left(M_{\kappa} ; \mathrm{d} m\right) \mathrm{d} \bar{z}=: \mathcal{H}_{\kappa} .
$$

Now, let us proceed to the proof of theorem 1.

Proof. Note first that the Pauli Hamiltonian \mathbb{P}_{k}^{v},

$$
\mathbb{P}_{\kappa}^{v}=\left(d+\mathrm{i} v \operatorname{ext} \theta_{\kappa}\right)^{*}\left(d+\mathrm{i} v \operatorname{ext} \theta_{\kappa}\right)+\left(d+\mathrm{i} v \operatorname{ext} \theta_{\kappa}\right)\left(d+\mathrm{i} v \operatorname{ext} \theta_{\kappa}\right)^{*},
$$

can be rewritten in the following form:

$$
\mathbb{P}_{\kappa}^{v}=\left[d, d^{*}\right]_{+}+\mathrm{i} v\left(\left[d^{*}, \boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right]_{+}-\left[d,\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}\right]_{+}\right)+v^{2}\left[\operatorname{ext} \theta_{\kappa},\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}\right]_{+},
$$

where $[A, B]_{+}=A B+B A$. Therefore, for $\omega=f \mathrm{~d} z+g \mathrm{~d} \bar{z} \equiv\binom{f}{g}$ being an arbitrary smooth differential 1-form on M_{κ} and $h_{\kappa}(z):=1+\kappa|z|^{2}$, we get the following results by direct computation:

Lemma 5. The Hodge-de Rham operator $d^{*} d+d d^{*}$ acting on ω is given by the following explicit expression in the complex coordinate z :

$$
d^{*} d+d d^{*}=-h_{\kappa}(z)\left\{h_{\kappa}(z)\left(\begin{array}{cc}
\partial^{2} / \partial z \partial \bar{z} & 0 \\
0 & \partial^{2} / \partial z \partial \bar{z}
\end{array}\right)+2 \kappa\left(\begin{array}{cc}
\bar{E} & 0 \\
0 & E
\end{array}\right)\right\}
$$

where \bar{E} is the complex conjugate of the complex Euler operator $E=z \partial / \partial z$.
Lemma 6. The operators $\left[\boldsymbol{\operatorname { x x t }} \theta_{\kappa},\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}\right]_{+},\left[d,\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}\right]_{+}$and $\left[d^{*}, \boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right]_{+}$act by
(i) $\left[\boldsymbol{\operatorname { x x t }} \theta_{\kappa},\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}\right]_{+} \omega=|z|^{2} \omega$.
(ii) $\left[d^{*}, \boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right]_{+} \omega=\frac{i}{2}\left[h_{\kappa}(z)(E-\bar{E}) \omega+h_{\kappa}(z) \sigma_{3} \omega+\kappa T_{z} \omega\right]$.
(iii) $\left[d,\left(\boldsymbol{\operatorname { e x t }} \theta_{\kappa}\right)^{*}\right]_{+} \omega=-\frac{\mathrm{i}}{2}\left[h_{\kappa}(z)(E-\bar{E}) \omega+h_{\kappa}(z) \sigma_{3} \omega-\kappa T_{z} \omega\right]$,
where $\sigma_{3}:=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $T_{z}:=\left(\begin{array}{cc}0 & \bar{z}^{2} \\ -z^{2} & 0\end{array}\right)$, i.e., $\sigma_{3}(f \mathrm{~d} z+g \mathrm{~d} \bar{z}):=f \mathrm{~d} z-g \mathrm{~d} \bar{z}$ and $T_{z}(f \mathrm{~d} z+$ $g \mathrm{~d} \bar{z})=\bar{z}^{2} g \mathrm{~d} z-z^{2} f \mathrm{~d} \bar{z}$.

Thus, by combining the above results, we obtain the desired explicit expression of $\mathbb{P}_{\kappa}^{\nu}$ of theorem 1.

Appendix B. Sketch of the proof of proposition 4

The proof of this proposition can be checked in a similar way as in [11] or [7].
First note that using the invariance property of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{v}}$ by the group of motions G_{κ} (8), it follows that the L^{2}-eigenprojector kernel $\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(z, w)$ satisfies the following invariance property:

Lemma 7. For all $g \in G_{\kappa}$, we have
$\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{\tilde{v}}}(z, w)=\left(\frac{1+\kappa z \overline{g^{-1} \cdot 0}}{1+\kappa \bar{z} g^{-1} \cdot 0}\right)^{\frac{\tilde{\delta}}{\kappa}}\left(\frac{1+\kappa w \overline{g^{-1} \cdot 0}}{1+\kappa \bar{w} g^{-1} \cdot 0}\right)^{-\frac{\tilde{\tilde{v}}}{\kappa}} \tilde{\mathcal{K}}_{\kappa, m}^{\tilde{\mathcal{V}}}(g \cdot z, g \cdot w)$.
Therefore, for $g=g_{w}:=\left(1+\kappa|w|^{2}\right)^{-\frac{1}{2}}\left(\begin{array}{rr}1 & w \\ -\kappa \bar{w} & 1\end{array}\right)$, which is clearly in G_{κ} and satisfies $g_{w} \cdot w=0$ and $g_{w}^{-1} \cdot 0=w$, we conclude (from (B.1)) that

$$
\begin{equation*}
\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(z, w)=\left(\frac{1+\kappa \bar{z} w}{1+\kappa z \bar{w}}\right)^{-\frac{\tilde{v}}{\kappa}} \tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}\left(g_{w}^{-1} \cdot z, 0\right) . \tag{B.2}
\end{equation*}
$$

In addition, we have
Lemma 8. The function $Z \in M_{\kappa} \mapsto \tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(Z, 0)$ is a radial L^{2}-eigenfunction of $\mathbb{L}_{\kappa}^{\tilde{\mathcal{V}}}$ with $\tilde{v}(2 m+1)+\kappa m(m+1)$ as eigenvalue. More explicitly
$\tilde{\mathcal{K}}_{\kappa, m}^{\tilde{v}}(Z, 0)=\frac{2 \tilde{\nu}+\kappa(2 m+1)}{\pi}\left(1+\kappa|z|^{2}\right)^{-\frac{\tilde{v}}{\kappa}-m}{ }_{2} F_{1}\left(-m,-\frac{2 \tilde{v}}{\kappa}-m ; 1 ;-\kappa|Z|^{2}\right)$.

Next, using the facts

$$
\left|g_{w}^{-1} \cdot z\right|^{2}=\frac{|z-w|^{2}}{|1+\kappa z \bar{w}|^{2}} \quad \text { and } \quad 1+\kappa\left|g_{w}^{-1} \cdot z\right|^{2}=\frac{\left(1+\kappa|z|^{2}\right)\left(1+\kappa|w|^{2}\right)}{|1+\kappa z \bar{w}|^{2}}
$$

combined with (B.2) and (B.3), we obtain the desired result of proposition 4.

References

[1] Aharonov Y and Casher A 1979 Ground state of a spin $1 / 2$ charged particle Phys. Rev. A 19 2461-3 Aharonov Y and Casher A 1980 Sov. Phys. JETP 79 2131-43
[2] Avron J E and Pnueli A 1992 Landau Hamiltonians on symmetric spaces Ideas and Methods in Quantum and Statical Physics (Oslo, 1988) vol 2 ed S Albeverio, J E Fendstad, H Holden and T Lindstrom (Cambridge: Cambridge University Press) pp 96-117
[3] Comtet A 1987 On the Landau levels on the hyperbolic plane Ann. Phys. 173 185-209
[4] Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry (Berlin: Springer)
[5] Dunne G V 1992 Hilbert space for charged particles in perpendicular magnetic fields Ann. Phys. 215 233-63
[6] Ferapontov E V and Veselov A P 2001 Integrable Schrödinger operators with magnetic fields: factorisation method on curved surfaces J. Math. Phys. 42 590-607
[7] Ghanmi A and Intissar A 2005 Asymptotic of complex hyperbolic geometry and L^{2}-spectral analysis of Landau-like Hamiltonians J. Math. Phys. 46 at press
[8] Karabali D and Nair V P 2002 Quantum Hall effect in higher dimensions Nucl. Phys. B 641 533-46 Preprint hep-th/0203264
[9] Landau L D and Lifschits E M 1966 Mécanique quantique, théorie non-relativiste Editions (Moscow: MIR)
[10] Novikov S P 1983 Two-dimensional Schrödinger operators in periodic fields Sov. Probl. Math. 23 3-32 Novikov S P 1985 J. Sov. Math. 28 1-19 (Engl. Transl.)
[11] Peetre J and Zhang G 1993 Harmonic analysis on the quantized Riemann sphere Inter. J. Math. Math. Sci. 16 225-43
[12] Rañada MF and Santander M 2002 On harmonic oscillators on the two-dimensional sphere S^{2} and the hyperbolic plane H^{2} J. Math. Phys. 43 431-51
[13] Rauch J and Taylor M 1975 Potential and scattering theory on wildly perturbed domains J. Func. Anal. 18 27-59
[14] Shigekawa I 1991 Spectral properties of Schrödinger operators with magnetic fields for a spin $\frac{1}{2}$ particle J. Func. Anal. 101 255-85

