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Abstract
We realize the Pauli Hamiltonians P

ν
κ (with constant magnetic field ν > 0) on

a simply connected Riemann surface Mκ of constant scalar curvature κ ∈ R

as second-order differential operators acting on differential 1-forms of Mκ .
We also study the asymptotic behaviour of some aspects of their L2-spectral
properties when the Euclidean limit is taken. More exactly, we show that the L2-
eigenprojector kernels on the plane R

2 = C (i.e., κ = 0) corresponding to the
Landau levels 8νl; l = 0, 1, . . . , can be recovered from the L2-eigenprojector
kernels of P

ν
κ of the curved Riemann surfaces Mκ , κ �= 0, in the limit κ �−→ 0.

PACS numbers: 02.30.Gp, 02.30.Tp, 02.30.Jr

1. Introduction

A single non-relativistic spinless particle constrained to move on a two-dimensional analytic
surface Mκ of constant scalar curvature κ , in the presence of a uniform external constant
magnetic field of magnitude ν > 0 directed orthogonally, is described by the Landau
Hamiltonian L

ν
κ [2, 5, 6] given explicitly in z-complex notation by

L
ν
κ = −(1 + κ|z|2)

{
(1 + κ|z|2) ∂2

∂z∂z̄
+ ν

(
z

∂

∂z
− z̄

∂

∂z̄

)}
+ ν2|z|2. (1)

The above Landau Hamiltonians L
ν
κ (or Maass Laplacians) have been extensively studied in

the physics and mathematics literature by many authors using different approaches; see, for
example, [2, 6, 9, 10]. They can be realized as Schrödinger operators by considering

L
ν
κ = (d + iν ext(θκ))

∗(d + iν ext(θκ)) (2)

acting on functions, with [ext(θκ)f ](z) := f (z)θκ(z) and where the differential 1-form θκ is
the gauge vector potential given explicitly by

θκ(z) = i(z̄ dz − z dz̄)

1 + κ|z|2 .
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Then, it is clear that the usual Landau Hamiltonian L
ν = L

ν
0 on R

2 = C given by

L
ν = −

{
∂2

∂z∂z̄
+ ν

(
z

∂

∂z
− z̄

∂

∂z̄

)
− ν2|z|2

}
, (3)

can be recovered formally as a limit of the unbounded operators L
ν
κ when κ → 0.

Thus the problem of connecting the spectral properties of the Landau Hamiltonian L
ν on

C as a limit of those on the curved spaces follows. This was first analysed by Comtet in [3].
He had shown in particular that on the Poincaré upper half plane P = {(x, y) ∈ R

2; y > 0}
endowed with the scaled hyperbolic metric whose negative constant scalar curvature is −1/ρ2,
the spectrum of the associated Landau Hamiltonian given by

L
ν(ρ) = −

{
y2

ρ2

(
∂2

∂x2
+

∂2

∂y2

)
− 2iνy

∂

∂x
− ν2ρ2

}
gives rise, when ρ → ∞, to the well-known Landau energy levels ν(2m + 1),m = 0, 1, . . . ,

that constitute the L2-point spectrum of the usual Landau Hamiltonian L
ν on L2(R2; dx dy).

Since then many authors have been interested. For the hyperbolic disc Dρ of radius ρ > 0
the situation is pretty similar since the above Landau Hamiltonian L

ν(ρ) is unitary equivalent
to L

ν
κ , (1), on Dρ with κ = −1/ρ2, via the Cayley transform w �→ z = ρ(w − i)/(w + i).

The generalization to higher dimensions, i.e., the complex Bergman ball B
n
ρ is presented in

[7]. For the compact partner of Dρ , i.e., the sphere S2
ρ ⊂ R

3 whose positive constant scalar
curvature is +1/ρ2, one can refer to [8].

In this paper, interested by a similar problem, we study the Euclidean limit of the L2-
spectral properties of the Pauli Hamiltonian P

ν
κ on the constant curvature Riemann surfaces

Mκ (see (7) below). For the flat case (κ = 0), the Pauli Hamiltonian P
ν = P

ν
0 that describes

a non-relativistic spin particle, acting on the two-component spinor
(ϕ

χ

)
, is known to be given

explicitly by

P
ν =

(
L

ν 0
0 L

ν

)
− ν

(
1 0
0 −1

)
. (4)

Therefore, the study of the L2-spectral properties of P
ν reduces further to the usual scalar

Landau Hamiltonian L
ν [9, 1, 4]. Such a Pauli Hamiltonian on R

2 = C can also be
realized, such as the Landau Hamiltonian (2), as a second-order differential operator acting
on differential 1-forms ω = ϕ dz + χ dz̄ of C through

P
ν = (d + iν ext(θ))∗(d + iν ext(θ)) + (d + iν ext(θ))(d + iν ext(θ))∗, (5)

with θ = i(z̄ dz− z dz̄) and ext(θ)ω = θ ∧ω. See also [14] for details on a similar realization.
Let us mention here that the Pauli Hamiltonian Pν derived in (5) and given explicitly in (4) is
equivalent to the standard magnetic Schrödinger operator given by

(−i∇ − −→
A )2 +

−→
β · −→

B ,

where
−→
A = 2ν(y,−x, 0) = νθ is the vector potential,

−→
B = ∇ × −→

A = (0, 0,−4ν) is the
associated magnetic field and

−→
β = (0, 0,±1) is the spin direction.

Then, to extend the notion of the Pauli Hamiltonian to any Riemann surface Mκ , one can
consider again (5) with θκ instead of θ . This will be considered as a geometrical realization
of the Pauli Hamiltonians on constant curvature Riemann surfaces. The concrete study of the
L2-spectral properties such as the L2-eigenvalues and the explicit expressions of the associated
L2-eigenforms as well as their asymptotics, when κ → 0, are so obtained by reducing further
to a system of two Landau Hamiltonians (lemma 2). This is possible thanks to the explicit
expression in z-complex notation of P

ν
κ established in theorem 1.
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Also, we have to show that for every fixed (z, w) ∈ C × C the L2-eigenprojector kernel
Kν

κ;l(z, w) (reproducing kernel) of the Pauli Hamiltonian P
ν
κ on Mκ , for κ small enough,

converges pointwise to the L2-eigenprojector kernel Kν
l (z, w) of the Pauli Hamiltonian P

ν on
C (see theorem 4). This can give, somehow, a justification of the formal limit of P

ν
κ (or resp.

L
ν
κ ) to P

ν (resp. L
ν) when κ → 0. We will carry out our study for the three models of simply

connected Riemann surfaces with constant scalar curvature in an unified manner as in [5] or
[12].

Let us note here that one cannot use perturbative theory theorems to obtain the above
results as done in [13]; the situation here is quite different.

The paper is structured as follows. In section 2, we fix notation, realize the Pauli
Hamiltonians on Mκ , as second-order differential operators on differential 1-forms, and give
their explicit expressions in z-complex notation (theorem 1) as well as their invariance property.
In section 3, we provide concrete description of their L2-eigenforms, while in section 4, we
give the explicit closed formulae for the L2-eigenprojector kernels of their corresponding
L2-eigenspaces (see theorem 3). The asymptotic of such L2-eigenprojector kernels, when
κ → 0 is proved in section 5. In section 6, we present some related remarks. We conclude
with an appendix in which we give the proofs of theorem 1 and proposition 4.

2. Pauli Hamiltonians on constant curvature Riemann surfaces

Let Mκ be a simply connected Riemann surface with constant scalar curvature κ(κ = ε/ρ2

with ε = ∓1 fixed and ρ ∈ ]0, +∞] with the convention that κ = 0 whenever ρ = +∞).
Then, it is known (Riemann uniformization theorem) that Mκ can be realized as the disc, the
plane or the sphere in R

3. That is

Mκ =


Dρ = {z ∈ C; |z| < ρ} for κ = − 1

ρ2 < 0

C for κ = 0
S2

ρ = C ∪ {∞} for κ = + 1
ρ2 > 0.

We equip Mκ with the Hermitian metric ds2
κ given by

ds2
κ := 4

(1 + κ|z|2)2
dz ⊗ dz̄,

and let θκ and dµκ be the associated real differential 1-form (a gauge vector potential) and the
volume measure on Mκ given respectively by

θκ(z) = i(z̄ dz − z dz̄)

1 + κ|z|2 and dµκ(z) = 4 dm(z)

(1 + κ|z|2)2
, (6)

where dm denotes the usual Lebesgue measure on Mκ .
Next, for ν ∈ R, we denote by ∇ν

θκ
the first-order differential operator acting on differential

p-forms of Mκ by ∇ν
θκ

:= d + iν(ext θκ). Here d is the usual exterior derivative and ext θκ is
the operator of exterior left multiplication by θκ , i.e., ext(θκ)ω = θκ ∧ ω for all differential
p-form ω. By

(∇ν
θκ

)∗
let us denote the formal adjoint of ∇ν

θκ
with respect to the Hermitian

scalar product induced by the Hermitian metric ds2
κ .

Definition. We call the Pauli Hamiltonian associated with the vector potential θκ on Mκ the
following second-order differential operator P

ν
κ acting on differential 1-forms of Mκ by

P
ν
κ := (∇ν

θκ

)∗∇ν
θκ

+ ∇ν
θκ

(∇ν
θκ

)∗
. (7)
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The above realization (7) allows one to show easily that such Pauli Hamiltonians P
ν
κ are

invariant by the action of the group of motions

Gκ :=
{
g =

(
a b

−κb̄ ā

)
= g(κ) ∈ M2,2(C); |a|2 + κ|b|2 = 1 and lim

κ→0
g(κ) exists

}
acting on Mκ via the transitive action defined by g · z = (az + b)(−κb̄z + ā)−1 for g ∈ Gκ .
More precisely, let T ν

κ be the unitary projective representation of Gκ on the Hilbert space
Hκ := L2(Mκ; dm) dz ⊕ L2(Mκ; dm) dz̄ defined by

[
T ν

κ (g)ω
]
(z) := jν

κ (g, z)g∗(ω)(z), with jν
κ (g, z) :=

(
1 + κz̄g−1 · 0

1 + κzg−1 · 0

) ν
κ

,

where g∗ω is the pull back of the differential form ω by the biholomorphic mapping g : z �→ g·z
for fixed g ∈ Gκ , then we have

Proposition 1 [7] (Invariance property). The Pauli Hamiltonians P
ν
κ are invariant by the

projective representation T ν
κ of the group Gκ on Mκ . That is, for all g ∈ Gκ,ω ∈ Hκ and

z ∈ Mκ , we have

T ν
κ (g)

[
P

ν
κ(ω)

]
(z) = P

ν
κ

[
T ν

κ (g)ω
]
(z).

Proof. First let us note that if the unitary transformation T ν
κ commutes with ∇ν

θκ
then it

commutes also with
(∇ν

θκ

)∗
and so the assertion of the proposition follows. The identity

T ν
κ (g)∇ν

θκ
= ∇ν

θκ
T ν

κ (g), for all g ∈ Gκ , holds by the use of the known facts dg∗ω = g∗dω and
g∗(θ ∧ ω) = g∗θ ∧ g∗ω combined with the following lemma:

Lemma 1. For g ∈ Gκ and z ∈ Mκ , we have[
T ν

κ (g)(θκ)
]
(z) = jν

κ (g, z)θκ(z) − i

κ
d
[
jν
κ (g, z)

]
. �

Now, to describe the concrete spectral properties of such Pauli Hamiltonians P
ν
κ we need first

to have their explicit expressions. Precisely, we have

Theorem 1. The Pauli Hamiltonian P
ν
κ as defined in (7) acts on smooth differential 1-forms

ω = f dz + g dz̄, identified to
(f

g

)
, through the following explicit 2 × 2 matrix differential

operator given by

P
ν
κ =

(
L

ν,ν−2κ
κ 0

0 L
ν+2κ,ν
κ

)
− ν

(
1 0
0 −1

)
, (8)

where L
α,β
κ , α, β ∈ R, is the second-order differential operator acting on scalar functions on

Mκ by

L
α,β
κ = −(1 + κ|z|2)

{
(1 + κ|z|2) ∂2

∂z∂z̄
+ αz

∂

∂z
− βz̄

∂

∂z̄

}
+ αβ|z|2.

The proof of theorem 1 is technical and will be given in appendix A.

Remark 1. Using the obtained explicit formula of the Pauli Hamiltonian, it can be shown
that P

ν
κ is an elliptic operator, densely defined on the Hilbert space Hκ = L2(Mκ; dm) dz ⊕

L2(Mκ; dm) dz̄ and admits unique self-adjoint realization on Hκ that we denote also by P
ν
κ .
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3. Concrete description of the L2-eigenforms of P
ν
κ

In this section we are concerned with the concrete description of the L2-eigenforms
ω ∈ Hκ of the Pauli Hamiltonian P

ν
κ . To do this we begin first by a brief review of

some well-established L2-spectral properties of the Landau Hamiltonians L
ν̃
κ , ν̃ > 0, on

L2(Mκ; dµκ) = {
f : Mκ −→ C; ∫

Mκ
|f (z)|2 dµκ < ∞}

.

3.1. L2-spectral properties of the Landau Hamiltonian L
ν̃
κ

For ν̃ > 0 let L
ν̃
κ be the usual Landau Hamiltonian on the Hilbert space L2(Mκ; dµκ) defined

by

L
ν̃
κ = −(1 + κ|z|2)

{
(1 + κ|z|2) ∂2

∂z∂z̄
+ ν̃

(
z

∂

∂z
− z̄

∂

∂z̄

)}
+ ν̃2|z|2 =: L

ν̃,ν̃
κ (9)

that we can realize it also as L
ν̃
κ = (∇ ν̃

θκ

)∗∇ ν̃
θκ

acting on scalar functions on Mκ . Thus, let us
consider the following eigenvalue problem:

L
ν̃
κφ = µφ, φ ∈ L2(Mκ; dµκ), µ ∈ C. (10)

Then, we have

Proposition 2. (i) The discrete part Specd

(
L

ν̃
κ

)
of the spectrum of the Landau Hamiltonian

L
ν̃
κ on L2(Mκ; dµκ) is given by

Specd

(
L

ν̃
κ

) =
{
µκ(m) := ν̃(2m + 1) + κm(m + 1), m ∈ Z

+, 0 � m <
2ν̃ + κ

|κ| − κ

}
with the conditions 2ν̃ + κ > 0 for κ � 0 and 2ν̃/κ ∈ Z

+ for κ > 0.
(ii) A smooth function φ ∈ L2(Mκ; dµκ) is a solution of (10) if and only if µ = µκ(m). In

this case, φ is expanded explicitly in terms of the Gauss hypergeometric function 2F1(a, b; c; x)

as follows

φ(z) =
+∞∑
p=0

m∑
q=0

am
pqφ

ν̃,pq
κ,m (z), (11)

where

φν̃,pq
κ,m (z) := (1 + κ|z|2)− ν̃

κ
−m

2F1

(
q − m,p − m − 2ν̃

κ
;p + q + 1;−κ|z|2

)
zpz̄q (12)

for p, q ∈ Z
+ such that pq = 0. The complex numbers am

pq satisfies the following growth
condition:

+∞∑
p=0

m!(p!)2

2(p + m)!
·
(

|κ|−p

(

2ν̃
κ

− m
)

(2ν̃ + κ(2m + 1))

(

2ν̃
κ

+ p − m
)) ∣∣am

p0

∣∣2
< +∞. (13)

Proof. The result in (i) is well known in the literature of mathematics and physics as Landau
energy levels. See for instance [2, 3, 6]. For the first part of (ii) (i.e., (11), (12)); the reader
can refer to [3] and [11] for example. The growth condition (13) for the coefficients am

pq is
given in [7]. �

Remark 2. The continuous part Specc

(
L

ν̃
κ

)
of the spectrum of the Landau Hamiltonian L

ν̃
κ on

L2(Mκ; dµκ) is empty for κ � 0. For the disc Dρ of radius ρ (i.e., κ = −1
ρ2 < 0), it is given by

Specc

(
L

ν̃
κ

) =
[
−κ

4
− ν2

κ
, +∞

[
=

[
1

4ρ2
+ ν2ρ2, +∞

[
. (14)
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3.2. L2-eigenforms of the Pauli Hamiltonian P
ν
κ

We fix ν > 0 and consider the following eigenvalue problem for the Pauli Hamiltonian P
ν
κ on

Hκ = L2(Mκ; dm) dz ⊕ L2(Mκ; dm) dz̄:

P
ν
κω = λω, ω = f dz + g dz̄ ∈ Hκ , λ ∈ C. (15)

According to the explicit expression of P
ν
κ given in theorem 1, the above equation (15) reduces

further to that of the scalar Landau Hamiltonian L
ν̃
κ . Namely, we have

Lemma 2. Let

Sκ =
(

1 + κ|z|2 0
0 1 + κ|z|2

)
.

Then

P
ν
κ = S−1

κ

{(
L

ν−κ
κ 0
0 L

ν+κ
κ

)
−

(
ν − κ 0

0 −(ν + κ)

)}
Sκ . (16)

Proof. By considering the unitary operator of multiplication by (1 + κ|z|2) from L2(Mκ; dm)

onto L2(Mκ; dµκ), i.e.,

L2(Mκ; dm) −→ L2(Mκ; dµκ)

f �−→ (1 + κ|z|2)f =: f̃ ,

and using direct computation we see that for arbitrary α, β ∈ R, we have

L
α,β
κ (f ) = (1 + κ|z|2)−1

L

α+β

2
κ [(1 + κ|z|2)f ]. (17)

Hence, result (16) holds as immediate consequence of theorem 1 and (17). �

Therefore, equation (15) becomes equivalent to the following system:
L

ν1
κ f̃ = (λ + 4ν1)f̃

L
ν2
κ g̃ = (λ − 4ν2)g̃

; f̃ , g̃ ∈ L2(Mκ; dµκ), (18)

with ν1 = ν − κ and ν2 = ν + κ . Thus, using (i) of proposition 2, we get

Proposition 3. The L2-eigenvalues of the Pauli Hamiltonian P
ν
κ acting on H+

κ =
L2(Mκ; dm) dz are given by

λ+
κ(l) = 2νl + κl(l − 1), l = 0, 1, 2, . . . , (19)

with 0 � l < νρ2 + 1
2 for the disc Dρ and 2νρ2 = 2, 3, . . . , for S2

ρ . Whereas, the L2-
eigenvalues of P

ν
κ acting on H−

κ = L2(Mκ; dm) dz̄ are given by

λ−
κ (l′) = 2ν(l′ + 1) + κ(l′ + 1)(l′ + 2), l′ = 0, 1, 2, . . . , (20)

with 0 � l′ < νρ2 − 3
2 for Dρ and 2νρ2 = 1, 2, . . . , for S2

ρ .

Furthermore, if ∇α is the first-order differential operator defined by

∇α := (1 + κ|z|2) ∂

∂z
+ (α + κ)z̄, α ∈ R,

then we have
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Theorem 2. The differential form f dz (resp. g dz̄) is the solution of P
ν
κω = λω in H+

κ (resp.
in H−

κ ) if and only if λ = λ+
κ(l) (resp. λ = λ−

κ (l′)) and f (resp. g) can be expanded in
L2(C; dm) as follows

f (z) = (1 + κ|z|2)−1∇ν−κ ◦ ∇ν ◦ · · · ◦ ∇ν+(l−2)κ [(1 + κ|z|2)− ν
κ
−l+1h(z)]

(resp. g(z) = (1 + κ|z|2)−1∇ν+κ ◦ ∇ν+2κ ◦ · · · ◦ ∇ν+l′κ [(1 + κ|z|2)− ν
κ
−l′−1h(z)]),

where h(z) = ∑+∞
p=0 apzp is an arbitrary holomorphic function on Mκ whose coefficients ap

satisfy the growth condition given in (13) for ν̃ = ν − κ (resp. ν̃ = ν + κ).

Proof. Let f dz ∈ H+
κ be a solution of P

ν
κ(f dz) = λ+

κ(l)f dz. Then, the function
f̃ = (1 + κ|z|2)f ∈ L2(Mκ; dµκ) is a L2-eigenfunction of the Landau Hamiltonian L

ν̃
κ

(ν̃ = ν − κ) with µκ(l) as eigenvalue. Hence, f̃ can be expanded as in (11)–(13).
To conclude for theorem 2, it suffices to see that every component φ

ν,pq

κ,l can be written in
terms of the first-order differential operator ∇α . We claim

Lemma 3. Set ∇ν̃,m := ∇ν̃ ◦∇ν̃+κ ◦· · ·◦∇ν̃+(m−1)κ . Then, in terms of the Gauss hypergeometric
function 2F1, we have

∇ν̃,m

[
(1 + κ|z|2)− ν̃

κ zp
] = Cν̃

κ (p,m)(1 + κ|z|2)− ν̃
κ
−m|z||m−p| e−i(m−p) arg z

× 2F1

(
−Min(p,m), Max(p − m, 0) − m − 2ν̃

κ
; |m − p| + 1;−κ|z|2

)
Whose proof can be handled by induction using some known transformations on
hypergeometric functions. �

Remark 3. Here we have given the result in a unified manner for both positive and negative
constant curvature κ , which recovers also the flat case (κ = 0). In the particular case of the
Pauli Hamiltonian on the sphere S2

ρ (κ = +1/ρ2), the result of theorem 2 can also be deduced
from theorem 3 of [6].

4. Explicit formulae for the L2-eigenprojector kernels of P
ν
κ

Fix ν > 0 and let A
2,ν
l,l′

(
P

ν
κ

)
be the L2-eigenspace of the Pauli Hamiltonian P

ν
κ associated with

the L2-eigenvalue λ = λκ(l, l
′). That is,

A
2,ν
l,l′

(
P

ν
κ

) =
{
ω =

(
f

g

)
∈ L2(Mκ; dm) ⊕ L2(Mκ; dm); P

ν
κω = λκ(l, l

′)ω
}
.

Then, the Hilbert space A
2,ν
l,l′

(
P

ν
κ

)
admits a L2-eigenprojector kernel (reproducing kernel)

Kν
κ;l,l′(z, w), i.e., such that for all ω ∈ A

2,ν
l,l′

(
P

ν
κ

)
we have

ω(z) =
∫

Mκ

Kν
κ;l,l′(z, w)ω(w) dµκ(w).

Moreover, it is given explicitly by the following:

Theorem 3. Fix l, l′ ∈ Z
+ such that λ+

κ(l) = λ−
κ (l′) = λκ(l, l

′). Then, the L2-eigenprojector
kernel Kν

κ;l,l′(z, w) of the L2-eigenspace A
2,ν
l,l′

(
P

ν
κ

)
is given by

Kν
κ;l,l′(z, w) =

(
1 + κ|w|2
1 + κ|z|2

) (
K̃ν−κ

κ,l (z, w) 0
0 K̃ν+κ

κ,l′ (z, w)

)
,
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where K̃ν̃
κ;m(z,w) is given explicitly by the following closed formula:

K̃ν̃
κ;m(z,w) = 2ν̃ + κ(2m + 1)

π

(
1 + κz̄w

1 + κzw̄

)− ν̃
κ

×
( |1 + κzw̄|2

(1 + κ|z|2)(1 + κ|w|2)
) ν̃

κ
+m

2F1

(
−m,−2ν̃

κ
− m; 1;−κ

|z − w|2
|1 + κzw̄|2

)
.

(21)

Proof. In view of (18), we split the Hilbert space A
2,ν
l,l′

(
P

ν
κ

)
in a direct sum as follows:

A
2,ν
l,l′

(
P

ν
κ

) = (1 + κ|z|2)−1A
2,ν
µ+

κ (l)

(
L

ν−κ
κ

)
dz ⊕ (1 + κ|z|2)−1A

2,ν
µ−

κ (l′)

(
L

ν+κ
κ

)
dz̄,

where A
2,ν
µ•

κ (m)

(
L

ν̃
κ

)
(⊂ L2(Mκ; dµκ)), for ν̃ = ν − κ and m = l or ν̃ = ν + κ and m = l′,

is the L2-eigenspace of the Landau Hamiltonian L
ν̃
κ associated with the Landau level µ•

κ(m)

(with µ+
κ(l) = λ+

κ(l) + (ν − κ) and µ−
κ (l′) = λ−

κ (l′) − (ν + κ)). Therefore, A
2,ν
l,l′

(
P

ν
κ

)
admits a

L2-eigenprojector kernel Kν
κ;l,l′(z, w) which is equal to

Kν
κ;l,l′(z, w) = 1√

2
(1 + κ|z|2)−1

(
K̃ν−κ

κ;l (z, w) 0
0 K̃ν+κ

κ;l′ (z, w)

)
(1 + κ|w|2),

where K̃ν̃
κ,m(z,w) is the L2-eigenprojector kernel of the L2-eigenspace Ã

2,ν̃
µ•

κ (m) of L
ν̃
κ associated

with the Landau level ν̃(2m+1)+κm(m+1). Then, we need just to specify further K̃ν̃
κ,m(z,w),

which is given by the following well-established proposition.

Proposition 4. The L2-eigenprojector kernel K̃ν̃
κ,m(z,w) of the Landau Hamiltonian L

ν̃
κ

associated to the Landau level ν̃(2m + 1) + κm(m + 1) is given explicitly by

K̃ν̃
κ,m(z,w) = 2ν̃ + κ(2m + 1)

π

(
1 + κz̄w

1 + κzw̄

)− ν̃
κ

×
( |1 + κzw̄|2

(1 + κ|z|2)(1 + κ|w|2)
) ν̃

κ
+m

2F1

(
−m,−2ν̃

κ
− m; 1;−κ

|z − w|2
|1 + κzw̄|2

)
.

(22)

Thus, the proof of theorem 3 will be completed by proving (22) (for its proof see
appendix B). �

Remark 4. If λ+
κ(l) �= λ−

κ (l′), we have to consider two cases. The case λκ(l, l
′) = λ+

κ(l) �=
λ−

κ (l′), for which we have

Kν
κ;l(z, w) =

(
1 + κ|w|2
1 + κ|z|2

) (
K̃ν−κ

κ;l (z, w) 0
0 0

)
and the case λκ(l, l

′) = λ−
κ (l′) �= λ+

κ(l), for which we have

Kν
κ,l′(z, w) =

(
1 + κ|w|2
1 + κ|z|2

) (
0 0
0 K̃ν+κ

κ,l′ (z, w)

)
.

Particularly, for the bottom eigenvalue 0 (corresponding to λ+
κ(0) = 0 for l = 0), we have

A
2,ν
0

(
P

ν
κ

) =
{
ω =

(
f

0

)
; f ∈ L2(Mκ; dm); P

ν
κ(f dz) = 0

}
,
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and the associated kernel function Kν
κ,0(z, w) is given by

Kν
κ,0(z, w) = 2ν − κ

π

(
1 + κ|w|2
1 + κ|z|2

) ( |1 + κzw̄|2
(1 + κ|z|2)(1 + κ|w|2)

) ν
κ
−1 (

1 0
0 0

)
.

5. Euclidean limit

According to the above discussion, the following facts hold when κ → 0 (i.e., when the radius
ρ goes to +∞).

Fact 1. The group of motions Gκ on Mκ converges to the affine group on the Euclidean
plane R

2 = C. More exactly, viewing the groups of motions Gκ, κ < 0, κ = 0, κ > 0, as

subspaces of M2,2(C), then for every fixed g0 in the affine group G0 = {(a b

0 ā

) ∈ M2,2(C);
|a|2 = 1, b ∈ C

}
, there exists a family (gκ)κ depending smoothly on κ such that gκ =(a(κ) b(κ)

−κb̄(κ) ā(κ)

) ∈ Gκ for every κ and g0 = limκ→0 gκ . Conversely, let (gκ)κ be such that
gκ ∈ Gκ for every κ and limκ→0 gκ exists. Then, we have limκ→0 gκ ∈ G0. Further details
can be found in [7] for a more general setting.

Fact 2. From (19) and (20), it is clear that the L2-eigenvalues of the Pauli Hamiltonian P
ν
κ on Mκ

converge to 2νl, l = 0, 1, . . . , that constitute the point spectrum of P
ν , the Pauli Hamiltonian

on the plane R
2 = C. This is exactly Comtet’s result [3] for the Landau Hamiltonian with

κ < 0.

Fact 3. The L2-eigenfunctions φ
ν̃,pq
κ,m (z) given in (12) associated with the L2-eigenvalue

µκ(m) = ν̃(2m + 1) + κm(m + 1) and realized in lemma 3, up to a given multiplicative
constant, as follows:

∇ν̃ ◦ ∇ν̃+κ ◦ · · · ◦ ∇ν̃+(m−1)κ

[
(1 + κ|z|2)− ν̃

κ zj
]

gives rise, when κ tends to 0 and for every fixed z ∈ C, to

lim
κ �→0

φν̃,pq
κ,m (z) =

(
∂

∂z
+ νz̄

)m (
e−ν|z|2zj

)
,

which constitute an orthogonal basis of the L2-eigenspace of the Landau Hamiltonian L
ν for

the flat case corresponding to the Landau level ν(2m+1) = limκ→0 µκ(m). They are expressed
in terms of the confluent hypergeometric function 1F1(a; c; x), up to a given multiplicative
constant, as follows:

e−ν|z|2 |z||p−m| e−i(m−p) arg z
1F1(−Min(m, p); |p − m| + 1; 2ν|z|2).

Now, for the asymptotic of the L2-eigenprojector kernels of P
ν
κ , we have the following

main result.

Theorem 4. Fix ν > 0 and let κ = ε/ρ2 for ε = ∓1 and ρ varying such that ρ2 ∈ (1/2ν)Z+.
Then, in the limit κ → 0, the L2-eigenprojector kernel Kν

κ;l,l′(z, w) of P
ν
κ converges

pointwisely on C × C to the L2-eigenprojector kernel of P
ν on C.

Proof. Let us note first that for κ small enough the condition 2ν̃ + κ > 0 in proposition 2 for
κ = −1/ρ2 is always satisfied and the assumption λ+

κ(l) = λ−
κ (l′) in theorem 3 reads simply

l = l′ + 1, so that the L2-eigenprojector kernel Kν
κ;l,l′(z, w) of the Pauli Hamiltonian P

ν
κ is well
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defined for a fixed (z, w) ∈ C×C. Then, keeping in mind the explicit formula of Kν
κ;l,l′(z, w)

(see theorem 3), we get

lim
κ �→0

(2ν̃ + (2m + 1)κ)

π

(
1 + κz̄w

1 + κzw̄

)− ν̃
κ

= 2ν

π
eν(zw̄−z̄w)

and

lim
κ �→0

( |1 + κzw̄|2
(1 + κ|z|2)(1 + κ|w|2)

) ν̃
κ

+m

= e−ν|z−w|2

for ν̃ = ν − κ or ν + κ . Then, using the well-known fact

lim
t �→0

2F1

(
a, b + t; c; x

t

)
= 1F1(a; c; x),

we conclude that

lim
κ �→0

2F1

(
−l,−2ν̃

κ
− l; 1;−κ

|z − w|2
|1 + κzw̄|2

)
= 1F1(−l; 1; 2ν|z − w|2)

and

lim
κ �→0

2F1

(
−l′,−2ν̃

κ
− l′; 1;−κ

|z − w|2
|1 + κzw̄|2

)
= 1F1(1 − l; 1; 2ν|z − w|2)

for l = l′ + 1. Therefore, we have

lim
κ �→0

Kν
κ;l,l′(z, w) = 2ν

π
eν(zw̄−z̄w) e−ν|z−w|2

×
(

1F1(−l; 1; 2ν|z − w|2) 0
0 1F1(1 − l; 1; 2ν|z − w|2)

)
.

Finally, note that the right-hand side is nothing but the L2-eigenprojector kernel Kν
0,l(z, w) of

the Pauli Hamiltonian P
ν of the Euclidean plane C. In fact, we have

Lemma 4. For l = 0, the L2-eigenprojector kernel of the L2-eigenspace A
2,ν
0 (Pν) is given by

2ν

π
eν(zw̄−z̄w) e−ν|z−w|2

(
1 0
0 0

)
.

For l �= 0, the L2-eigenprojector kernel of the L2-eigenspace A
2,ν
l (Pν) is given by

Kν
0,l(z, w) = 2ν

π
eν(zw̄−z̄w) e−ν|z−w|2

(
1F1(−l; 1; 2ν|z − w|2) 0

0 1F1(1 − l; 1; 2ν|z − w|2)
)

.

This finishes the proof of theorem 4. �

6. Concluding remarks

In this paper, we have provided concrete spectral properties, such as the explicit formulae
for the L2-eigenforms and the L2-eigenprojector kernels, of the Pauli Hamiltonians P

ν
κ on

simply connected Riemann surfaces with constant scalar curvature κ = ε/ρ2. Further, we
have discussed their limits when κ → 0 (i.e. ρ → +∞). This was possible thanks to the
explicit expression of P

ν
κ (theorem 1). Below, we point out some related remarks.

In contrast to the case of the scalar Landau Hamiltonians L
ν
κ , the value 0 is an isolated L2-

eigenvalue for the Pauli Hamiltonians P
ν
κ . The corresponding L2-eigenspace reduces further
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to ker P
ν
κ in Hκ . More exactly, for the hyperbolic disc Dρ , the corresponding L2-eigenspace

ker P
ν
κ given by

(
f

0

)
; f (z) =

(
1 −

∣∣∣∣ z

ρ

∣∣∣∣2
)νρ2

+∞∑
p=0

apzp with
+∞∑
p=0

ρ2pp!
(2νρ2 + 2)|ap|2

(2νρ2 + p + 2)

< +∞
,

is isomorphic to the usual weighted Bergman Hilbert space of square integrable holomorphic

functions on Dρ with respect to the density
(
1 − ∣∣ z

ρ

∣∣2)2νρ2−2
dm. For S2

ρ , the null space of the

Pauli Hamiltonian is reduced essentially, up to the multiplicative function
(
1 +

∣∣ z
ρ

∣∣2)−νρ2

, to

the space of polynomial functions of degrees less than or equal to the integer 2νρ2. Therefore,
it results that the formal limit of such Hilbert spaces, when ρ → +∞, gives rise to ker P

ν

which is isomorphic to the classical Bargmann–Fock space{
h : C → C, h entire on C and

∫
C

|h(z)|2 e−2ν|z|2 dm(z) < +∞
}
.

Also, we note that the L2-eigenvalues λ+
κ(l) and λ−

κ (l′) of the Pauli Hamiltonian P
ν
κ occur with

infinite multiplicities for κ � 0. For κ = +1/ρ2 > 0, they occur with finite degeneracies.
More precisely, for the eigenvalue 2νl + κl(l − 1), the multiplicity is 2νρ2 + 2l − 1 and for the
eigenvalue 2ν(l + 1) + κ(l + 1)(l + 2), the multiplicity is 2νρ2 + 2l + 3. Therefore, when the
planar image is taken we recuperate the eigenvalues with their multiplicities.

We conclude this section by noting that under the assumptions 2νρ2 > 3 for the disc Dρ

and 2νρ2 = 2, 3, . . . , for S2
ρ , the existence of a L2-eigenform ω = f dz + g dz̄ with f �= 0

and g �= 0 is related to the existence of a solution (l, l′) of the following algebraic equation:

l(2νρ2 + 1 − l) = (l′ + 1)(2νρ2 − 2 − l′). (23)

It depends clearly on the value of 2νρ2. Thus, if 2νρ2 is irrational there is no solution of
(23). Further, one can show that (l, l′) to be a solution for (23), we must have necessary
l′ � l. So, (l, l + s) for s ∈ Z

+, is a solution if and only if 2νρ2 is rational such that
(2l + s + 1)(s + 2) = 2νρ2(s + 1). Note finally that such equation (23) reads simply l = l′ + 1
for ρ large enough.
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Appendix A. Proof of theorem 1

We first fix further notation and recall some needed facts. For p = 0, 1 or 2, let Hp
κ denote

the Hilbert space obtained as the completion of C∞
c (Mκ;�pMκ), the space of C∞-differential

p-forms with compact support in Mκ , with respect to the natural Hermitian scalar product
induced from the metric ds2

κ and defined by

(α, β)p :=
∫

Mκ

α ∧ �β, α, β ∈ C∞
c (Mκ;�pMκ). (A.1)
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In the integrand, � is the Hodge star operator canonically associated with ds2
κ acting on

differential forms of Mκ as follows

�1 = 2i
dz ∧ dz̄

(1 + κ|z|2)2
; � dz = i dz̄; � dz̄ = −i dz; �(dz ∧ dz̄) = i

2
(1 + κ|z|2)2.

At this level let mention that the adjoints d∗ of d and (ext θκ)
∗ of ext θκ , with respect to the

Hermitian scalar product (A.1), are given respectively by

d∗ = − � d � and (ext θκ)
∗ = �(ext θκ) � .

Then, for p = 0, the space H0
κ is nothing but the usual Hilbert space of square integrable

complex-valued functions on Mκ with respect to the volume measure dµκ , i.e., H0
κ =

L2(Mκ; dµκ). For p = 1, the Hilbert space H1
κ of L2-differential 1-forms ω = f dz + g dz̄

consists of the couple of functions (f, g) on Mκ that are square integrables with respect to the
Lebesgue measure dm. That is

H1
κ = L2(Mκ; dm) dz ⊕ L2(Mκ; dm) dz̄ =: Hκ .

Now, let us proceed to the proof of theorem 1.

Proof. Note first that the Pauli Hamiltonian P
ν
κ ,

P
ν
κ = (d + iν ext θκ)

∗(d + iν ext θκ) + (d + iν ext θκ)(d + iν ext θκ)
∗,

can be rewritten in the following form:

P
ν
κ = [d, d∗]+ + iν([d∗, ext θκ ]+ − [d, (ext θκ)

∗]+) + ν2[ext θκ, (ext θκ)
∗]+,

where [A,B]+ = AB + BA. Therefore, for ω = f dz + g dz̄ ≡ (f

g

)
being an arbitrary smooth

differential 1-form on Mκ and hκ(z) := 1 + κ|z|2, we get the following results by direct
computation:

Lemma 5. The Hodge–de Rham operator d∗d + dd∗ acting on ω is given by the following
explicit expression in the complex coordinate z:

d∗d + dd∗ = −hκ(z)

{
hκ(z)

(
∂2/∂z∂z̄ 0

0 ∂2/∂z∂z̄

)
+ 2κ

(
E 0
0 E

)}
,

where E is the complex conjugate of the complex Euler operator E = z∂/∂z.

Lemma 6. The operators [ext θκ, (ext θκ)
∗]+, [d, (ext θκ)

∗]+ and [d∗, ext θκ ]+ act by

(i) [ext θκ, (ext θκ)
∗]+ω = |z|2ω.

(ii) [d∗, ext θκ ]+ω = i
2 [hκ(z)(E − Ē)ω + hκ(z)σ3ω + κTzω].

(iii) [d, (ext θκ)
∗]+ω = − i

2 [hκ(z)(E − Ē)ω + hκ(z)σ3ω − κTzω],

where σ3 := (1 0
0 −1

)
and Tz := (0 z̄2

−z2 0

)
, i.e., σ3(f dz + g dz̄) := f dz − g dz̄ and Tz(f dz +

g dz̄) = z̄2g dz − z2f dz̄.

Thus, by combining the above results, we obtain the desired explicit expression of P
ν
κ of

theorem 1.
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Appendix B. Sketch of the proof of proposition 4

The proof of this proposition can be checked in a similar way as in [11] or [7].
First note that using the invariance property of the Landau Hamiltonian L

ν̃
κ by the group of

motions Gκ (8), it follows that the L2-eigenprojector kernel K̃ν̃
κ,m(z,w) satisfies the following

invariance property:

Lemma 7. For all g ∈ Gκ , we have

K̃ν̃
κ,m(z,w) =

(
1 + κzg−1.0

1 + κz̄g−1 · 0

) ν̃
κ
(

1 + κwg−1 · 0

1 + κw̄g−1 · 0

)− ν̃
κ

K̃ν̃
κ,m(g · z, g · w). (B.1)

Therefore, for g = gw := (1 + κ|w|2)− 1
2
( 1 w

−κw̄ 1

)
, which is clearly in Gκ and satisfies

gw · w = 0 and g−1
w · 0 = w, we conclude (from (B.1)) that

K̃ν̃
κ,m(z,w) =

(
1 + κz̄w

1 + κzw̄

)− ν̃
κ

K̃ν̃
κ,m

(
g−1

w · z, 0
)
. (B.2)

In addition, we have

Lemma 8. The function Z ∈ Mκ �→ K̃ν̃
κ,m(Z, 0) is a radial L2-eigenfunction of L

ν̃
κ with

ν̃(2m + 1) + κm(m + 1) as eigenvalue. More explicitly

K̃ν̃
κ,m(Z, 0) = 2ν̃ + κ(2m + 1)

π
(1 + κ|z|2)− ν̃

κ
−m

2F1

(
−m,−2ν̃

κ
− m; 1;−κ|Z|2

)
. (B.3)

Next, using the facts∣∣g−1
w · z

∣∣2 = |z − w|2
|1 + κzw̄|2 and 1 + κ

∣∣g−1
w · z

∣∣2 = (1 + κ|z|2)(1 + κ|w|2)
|1 + κzw̄|2

combined with (B.2) and (B.3), we obtain the desired result of proposition 4. �
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