

Home

Search Collections Journals About Contact us My IOPscience

Euclidean limit of L^2 -spectral properties of the Pauli Hamiltonians on constant curvature Riemann surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 38 1917 (http://iopscience.iop.org/0305-4470/38/9/006) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.101 The article was downloaded on 03/06/2010 at 04:11

Please note that terms and conditions apply.

J. Phys. A: Math. Gen. 38 (2005) 1917-1930

doi:10.1088/0305-4470/38/9/006

Euclidean limit of L^2 -spectral properties of the Pauli Hamiltonians on constant curvature Riemann surfaces

Allal Ghanmi

Department of Mathematics, Faculty of Sciences, PO Box 1014, Agdal, Rabat 10 000, Morocco

E-mail: aghanmi@math.net

Received 19 July 2004, in final form 23 December 2004 Published 16 February 2005 Online at stacks.iop.org/JPhysA/38/1917

Abstract

We realize the Pauli Hamiltonians $\mathbb{P}_{\kappa}^{\nu}$ (with constant magnetic field $\nu > 0$) on a simply connected Riemann surface M_{κ} of constant scalar curvature $\kappa \in \mathbb{R}$ as second-order differential operators acting on differential 1-forms of M_{κ} . We also study the asymptotic behaviour of some aspects of their L^2 -spectral properties when the Euclidean limit is taken. More exactly, we show that the L^2 eigenprojector kernels on the plane $\mathbb{R}^2 = \mathbb{C}$ (i.e., $\kappa = 0$) corresponding to the Landau levels $8\nu l; l = 0, 1, \ldots$, can be recovered from the L^2 -eigenprojector kernels of $\mathbb{P}_{\kappa}^{\nu}$ of the curved Riemann surfaces $M_{\kappa}, \kappa \neq 0$, in the limit $\kappa \longmapsto 0$.

PACS numbers: 02.30.Gp, 02.30.Tp, 02.30.Jr

1. Introduction

A single non-relativistic spinless particle constrained to move on a two-dimensional analytic surface M_{κ} of constant scalar curvature κ , in the presence of a uniform external constant magnetic field of magnitude $\nu > 0$ directed orthogonally, is described by the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\nu}$ [2, 5, 6] given explicitly in *z*-complex notation by

$$\mathbb{L}_{\kappa}^{\nu} = -(1+\kappa|z|^2) \left\{ (1+\kappa|z|^2) \frac{\partial^2}{\partial z \partial \bar{z}} + \nu \left(z \frac{\partial}{\partial z} - \bar{z} \frac{\partial}{\partial \bar{z}} \right) \right\} + \nu^2 |z|^2.$$
(1)

The above Landau Hamiltonians \mathbb{L}_{k}^{ν} (or Maass Laplacians) have been extensively studied in the physics and mathematics literature by many authors using different approaches; see, for example, [2, 6, 9, 10]. They can be realized as Schrödinger operators by considering

$$\mathbb{L}_{\kappa}^{\nu} = (d + \mathrm{i}\nu \operatorname{ext}(\theta_{\kappa}))^{*}(d + \mathrm{i}\nu \operatorname{ext}(\theta_{\kappa}))$$
(2)

1917

acting on functions, with $[ext(\theta_{\kappa})f](z) := f(z)\theta_{\kappa}(z)$ and where the differential 1-form θ_{κ} is the gauge vector potential given explicitly by

$$\theta_{\kappa}(z) = \frac{\mathrm{i}(\bar{z}\,\mathrm{d}z - z\,\mathrm{d}\bar{z})}{1 + \kappa |z|^2}.$$

0305-4470/05/091917+14\$30.00 © 2005 IOP Publishing Ltd Printed in the UK

Then, it is clear that the usual Landau Hamiltonian $\mathbb{L}^\nu=\mathbb{L}^\nu_0$ on $\mathbb{R}^2=\mathbb{C}$ given by

$$\mathbb{L}^{\nu} = -\left\{\frac{\partial^2}{\partial z \partial \bar{z}} + \nu \left(z\frac{\partial}{\partial z} - \bar{z}\frac{\partial}{\partial \bar{z}}\right) - \nu^2 |z|^2\right\},\tag{3}$$

can be recovered formally as a limit of the unbounded operators $\mathbb{L}^{\nu}_{\kappa}$ when $\kappa \to 0$.

Thus the problem of connecting the spectral properties of the Landau Hamiltonian \mathbb{L}^{ν} on \mathbb{C} as a limit of those on the curved spaces follows. This was first analysed by Comtet in [3]. He had shown in particular that on the Poincaré upper half plane $\mathcal{P} = \{(x, y) \in \mathbb{R}^2; y > 0\}$ endowed with the scaled hyperbolic metric whose negative constant scalar curvature is $-1/\rho^2$, the spectrum of the associated Landau Hamiltonian given by

$$\mathbb{L}^{\nu}(\rho) = -\left\{\frac{y^2}{\rho^2}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) - 2i\nu y \frac{\partial}{\partial x} - \nu^2 \rho^2\right\}$$

gives rise, when $\rho \to \infty$, to the well-known Landau energy levels $\nu(2m + 1), m = 0, 1, \ldots$, that constitute the L^2 -point spectrum of the usual Landau Hamiltonian \mathbb{L}^{ν} on $L^2(\mathbb{R}^2; dx dy)$. Since then many authors have been interested. For the hyperbolic disc D_{ρ} of radius $\rho > 0$ the situation is pretty similar since the above Landau Hamiltonian $\mathbb{L}^{\nu}(\rho)$ is unitary equivalent to $\mathbb{L}^{\nu}_{\kappa}$, (1), on D_{ρ} with $\kappa = -1/\rho^2$, via the Cayley transform $w \mapsto z = \rho(w-i)/(w+i)$. The generalization to higher dimensions, i.e., the complex Bergman ball \mathbb{B}^n_{ρ} is presented in [7]. For the compact partner of D_{ρ} , i.e., the sphere $S^2_{\rho} \subset \mathbb{R}^3$ whose positive constant scalar curvature is $+1/\rho^2$, one can refer to [8].

In this paper, interested by a similar problem, we study the Euclidean limit of the L^2 -spectral properties of the Pauli Hamiltonian $\mathbb{P}^{\nu}_{\kappa}$ on the constant curvature Riemann surfaces M_{κ} (see (7) below). For the flat case ($\kappa = 0$), the Pauli Hamiltonian $\mathbb{P}^{\nu} = \mathbb{P}^{\nu}_{0}$ that describes a non-relativistic spin particle, acting on the two-component spinor $\binom{\varphi}{\chi}$, is known to be given explicitly by

$$\mathbb{P}^{\nu} = \begin{pmatrix} \mathbb{L}^{\nu} & 0\\ 0 & \mathbb{L}^{\nu} \end{pmatrix} - \nu \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}.$$
(4)

Therefore, the study of the L^2 -spectral properties of \mathbb{P}^{ν} reduces further to the usual scalar Landau Hamiltonian \mathbb{L}^{ν} [9, 1, 4]. Such a Pauli Hamiltonian on $\mathbb{R}^2 = \mathbb{C}$ can also be realized, such as the Landau Hamiltonian (2), as a second-order differential operator acting on differential 1-forms $\omega = \varphi \, dz + \chi \, d\bar{z}$ of \mathbb{C} through

$$\mathbb{P}^{\nu} = (d + i\nu \operatorname{ext}(\theta))^* (d + i\nu \operatorname{ext}(\theta)) + (d + i\nu \operatorname{ext}(\theta))(d + i\nu \operatorname{ext}(\theta))^*,$$
(5)

with $\theta = i(\bar{z} dz - z d\bar{z})$ and $ext(\theta)\omega = \theta \wedge \omega$. See also [14] for details on a similar realization. Let us mention here that the Pauli Hamiltonian \mathbb{P}_{ν} derived in (5) and given explicitly in (4) is equivalent to the standard magnetic Schrödinger operator given by

$$(-i\nabla - \overrightarrow{A})^2 + \overrightarrow{\beta} \cdot \overrightarrow{B},$$

where $\overrightarrow{A} = 2\nu(y, -x, 0) = \nu\theta$ is the vector potential, $\overrightarrow{B} = \nabla \times \overrightarrow{A} = (0, 0, -4\nu)$ is the associated magnetic field and $\overrightarrow{\beta} = (0, 0, \pm 1)$ is the spin direction.

Then, to extend the notion of the Pauli Hamiltonian to any Riemann surface M_{κ} , one can consider again (5) with θ_{κ} instead of θ . This will be considered as a geometrical realization of the Pauli Hamiltonians on constant curvature Riemann surfaces. The concrete study of the L^2 -spectral properties such as the L^2 -eigenvalues and the explicit expressions of the associated L^2 -eigenforms as well as their asymptotics, when $\kappa \to 0$, are so obtained by reducing further to a system of two Landau Hamiltonians (lemma 2). This is possible thanks to the explicit expression in *z*-complex notation of $\mathbb{P}_{\kappa}^{\nu}$ established in theorem 1. Also, we have to show that for every fixed $(z, w) \in \mathbb{C} \times \mathbb{C}$ the L^2 -eigenprojector kernel $\mathcal{K}_{\kappa;l}^{\nu}(z, w)$ (reproducing kernel) of the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$ on M_{κ} , for κ small enough, converges pointwise to the L^2 -eigenprojector kernel $\mathcal{K}_l^{\nu}(z, w)$ of the Pauli Hamiltonian \mathbb{P}^{ν} on \mathbb{C} (see theorem 4). This can give, somehow, a justification of the formal limit of $\mathbb{P}_{\kappa}^{\nu}$ (or resp. $\mathbb{L}_{\kappa}^{\nu}$) to \mathbb{P}^{ν} (resp. \mathbb{L}^{ν}) when $\kappa \to 0$. We will carry out our study for the three models of simply connected Riemann surfaces with constant scalar curvature in an unified manner as in [5] or [12].

Let us note here that one cannot use perturbative theory theorems to obtain the above results as done in [13]; the situation here is quite different.

The paper is structured as follows. In section 2, we fix notation, realize the Pauli Hamiltonians on M_{κ} , as second-order differential operators on differential 1-forms, and give their explicit expressions in *z*-complex notation (theorem 1) as well as their invariance property. In section 3, we provide concrete description of their L^2 -eigenforms, while in section 4, we give the explicit closed formulae for the L^2 -eigenprojector kernels of their corresponding L^2 -eigenspaces (see theorem 3). The asymptotic of such L^2 -eigenprojector kernels, when $\kappa \to 0$ is proved in section 5. In section 6, we present some related remarks. We conclude with an appendix in which we give the proofs of theorem 1 and proposition 4.

2. Pauli Hamiltonians on constant curvature Riemann surfaces

Let M_{κ} be a simply connected Riemann surface with constant scalar curvature $\kappa(\kappa = \varepsilon/\rho^2$ with $\varepsilon = \pm 1$ fixed and $\rho \in [0, +\infty]$ with the convention that $\kappa = 0$ whenever $\rho = +\infty$). Then, it is known (Riemann uniformization theorem) that M_{κ} can be realized as the disc, the plane or the sphere in \mathbb{R}^3 . That is

$$M_{\kappa} = \begin{cases} D_{\rho} = \{ z \in \mathbb{C}; |z| < \rho \} & \text{for } \kappa = -\frac{1}{\rho^2} < 0 \\ \mathbb{C} & \text{for } \kappa = 0 \\ S_{\rho}^2 = \mathbb{C} \cup \{ \infty \} & \text{for } \kappa = +\frac{1}{\rho^2} > 0. \end{cases}$$

We equip M_{κ} with the Hermitian metric ds_{κ}^2 given by

$$\mathrm{d} s_{\kappa}^2 := \frac{4}{(1+\kappa|z|^2)^2} \,\mathrm{d} z \otimes \mathrm{d} \bar{z}$$

and let θ_{κ} and $d\mu_{\kappa}$ be the associated real differential 1-form (a gauge vector potential) and the volume measure on M_{κ} given respectively by

$$\theta_{\kappa}(z) = \frac{i(\bar{z}\,dz - z\,d\bar{z})}{1 + \kappa |z|^2} \qquad \text{and} \qquad d\mu_{\kappa}(z) = \frac{4\,dm(z)}{(1 + \kappa |z|^2)^2},\tag{6}$$

where dm denotes the usual Lebesgue measure on M_{κ} .

Next, for $\nu \in \mathbb{R}$, we denote by $\nabla_{\theta_{\kappa}}^{\nu}$ the first-order differential operator acting on differential *p*-forms of M_{κ} by $\nabla_{\theta_{\kappa}}^{\nu} := d + i\nu(\mathbf{ext}\,\theta_{\kappa})$. Here *d* is the usual exterior derivative and $\mathbf{ext}\,\theta_{\kappa}$ is the operator of exterior left multiplication by θ_{κ} , i.e., $\mathbf{ext}(\theta_{\kappa})\omega = \theta_{\kappa} \wedge \omega$ for all differential *p*-form ω . By $(\nabla_{\theta_{\kappa}}^{\nu})^*$ let us denote the formal adjoint of $\nabla_{\theta_{\kappa}}^{\nu}$ with respect to the Hermitian scalar product induced by the Hermitian metric ds_{κ}^2 .

Definition. We call the Pauli Hamiltonian associated with the vector potential θ_{κ} on M_{κ} the following second-order differential operator $\mathbb{P}^{\nu}_{\kappa}$ acting on differential 1-forms of M_{κ} by

$$\mathbb{P}^{\nu}_{\kappa} := \left(\nabla^{\nu}_{\theta_{\kappa}}\right)^* \nabla^{\nu}_{\theta_{\kappa}} + \nabla^{\nu}_{\theta_{\kappa}} \left(\nabla^{\nu}_{\theta_{\kappa}}\right)^*. \tag{7}$$

The above realization (7) allows one to show easily that such Pauli Hamiltonians $\mathbb{P}_{\kappa}^{\nu}$ are invariant by the action of the group of motions

$$G_{\kappa} := \begin{cases} g = \begin{pmatrix} a & b \\ -\kappa \bar{b} & \bar{a} \end{pmatrix} = g(\kappa) \in M_{2,2}(\mathbb{C}); |a|^2 + \kappa |b|^2 = 1 \text{ and } \lim_{\kappa \to 0} g(\kappa) \text{ exists} \end{cases}$$

acting on M_{κ} via the transitive action defined by $g \cdot z = (az + b)(-\kappa \bar{b}z + \bar{a})^{-1}$ for $g \in G_{\kappa}$. More precisely, let T_{κ}^{ν} be the unitary projective representation of G_{κ} on the Hilbert space $\mathcal{H}_{\kappa} := L^2(M_{\kappa}; \mathrm{d}m) \, \mathrm{d}z \oplus L^2(M_{\kappa}; \mathrm{d}m) \, \mathrm{d}\bar{z}$ defined by

$$\left[T_{\kappa}^{\nu}(g)\omega\right](z) := j_{\kappa}^{\nu}(g,z)g^{*}(\omega)(z), \qquad \text{with} \quad j_{\kappa}^{\nu}(g,z) := \left(\frac{1+\kappa\bar{z}g^{-1}\cdot 0}{1+\kappa zg^{-1}\cdot 0}\right)^{\bar{\kappa}}$$

where $g^*\omega$ is the pull back of the differential form ω by the biholomorphic mapping $g : z \mapsto g \cdot z$ for fixed $g \in G_{\kappa}$, then we have

Proposition 1 [7] (Invariance property). The Pauli Hamiltonians $\mathbb{P}_{\kappa}^{\nu}$ are invariant by the projective representation T_{κ}^{ν} of the group G_{κ} on M_{κ} . That is, for all $g \in G_{\kappa}$, $\omega \in \mathcal{H}_{\kappa}$ and $z \in M_{\kappa}$, we have

$$T^{\nu}_{\kappa}(g) \Big[\mathbb{P}^{\nu}_{\kappa}(\omega) \Big](z) = \mathbb{P}^{\nu}_{\kappa} \Big[T^{\nu}_{\kappa}(g) \omega \Big](z).$$

Proof. First let us note that if the unitary transformation T_{κ}^{ν} commutes with $\nabla_{\theta_{\kappa}}^{\nu}$ then it commutes also with $(\nabla_{\theta_{\kappa}}^{\nu})^*$ and so the assertion of the proposition follows. The identity $T_{\kappa}^{\nu}(g)\nabla_{\theta_{\kappa}}^{\nu} = \nabla_{\theta_{\kappa}}^{\nu}T_{\kappa}^{\nu}(g)$, for all $g \in G_{\kappa}$, holds by the use of the known facts $dg^*\omega = g^*d\omega$ and $g^*(\theta \wedge \omega) = g^*\theta \wedge g^*\omega$ combined with the following lemma:

Lemma 1. For $g \in G_{\kappa}$ and $z \in M_{\kappa}$, we have

$$\left[T_{\kappa}^{\nu}(g)(\theta_{\kappa})\right](z) = j_{\kappa}^{\nu}(g,z)\theta_{\kappa}(z) - \frac{1}{\kappa}d\left[j_{\kappa}^{\nu}(g,z)\right].$$

Now, to describe the concrete spectral properties of such Pauli Hamiltonians $\mathbb{P}^{\nu}_{\kappa}$ we need first to have their explicit expressions. Precisely, we have

Theorem 1. The Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$ as defined in (7) acts on smooth differential 1-forms $\omega = f \, dz + g \, d\overline{z}$, identified to $\binom{f}{g}$, through the following explicit 2×2 matrix differential operator given by

$$\mathbb{P}_{\kappa}^{\nu} = \begin{pmatrix} \mathbb{L}_{\kappa}^{\nu,\nu-2\kappa} & 0\\ 0 & \mathbb{L}_{\kappa}^{\nu+2\kappa,\nu} \end{pmatrix} - \nu \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \tag{8}$$

where $\mathbb{L}_{\kappa}^{\alpha,\beta}, \alpha, \beta \in \mathbb{R}$, is the second-order differential operator acting on scalar functions on M_{κ} by

$$\mathbb{L}_{\kappa}^{\alpha,\beta} = -(1+\kappa|z|^2) \left\{ (1+\kappa|z|^2) \frac{\partial^2}{\partial z \partial \bar{z}} + \alpha z \frac{\partial}{\partial z} - \beta \bar{z} \frac{\partial}{\partial \bar{z}} \right\} + \alpha \beta |z|^2.$$

The proof of theorem 1 is technical and will be given in appendix A.

Remark 1. Using the obtained explicit formula of the Pauli Hamiltonian, it can be shown that $\mathbb{P}_{\kappa}^{\nu}$ is an elliptic operator, densely defined on the Hilbert space $\mathcal{H}_{\kappa} = L^2(M_{\kappa}; dm) dz \oplus L^2(M_{\kappa}; dm) d\bar{z}$ and admits unique self-adjoint realization on \mathcal{H}_{κ} that we denote also by $\mathbb{P}_{\kappa}^{\nu}$.

3. Concrete description of the L^2 -eigenforms of $\mathbb{P}_{\kappa}^{\nu}$

In this section we are concerned with the concrete description of the L^2 -eigenforms $\omega \in \mathcal{H}_{\kappa}$ of the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$. To do this we begin first by a brief review of some well-established L^2 -spectral properties of the Landau Hamiltonians $\mathbb{L}_{\kappa}^{\tilde{\nu}}$, $\tilde{\nu} > 0$, on $L^2(\mathcal{M}_{\kappa}; d\mu_{\kappa}) = \{f: \mathcal{M}_{\kappa} \longrightarrow \mathbb{C}; \int_{\mathcal{M}_{\kappa}} |f(z)|^2 d\mu_{\kappa} < \infty\}.$

3.1. L^2 -spectral properties of the Landau Hamiltonian $\mathbb{L}^{\tilde{\nu}}_{\kappa}$

For $\tilde{\nu} > 0$ let $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ be the usual Landau Hamiltonian on the Hilbert space $L^{2}(M_{\kappa}; d\mu_{\kappa})$ defined by

$$\mathbb{L}^{\tilde{\nu}}_{\kappa} = -(1+\kappa|z|^2) \left\{ (1+\kappa|z|^2) \frac{\partial^2}{\partial z \partial \bar{z}} + \tilde{\nu} \left(z \frac{\partial}{\partial z} - \bar{z} \frac{\partial}{\partial \bar{z}} \right) \right\} + \tilde{\nu}^2 |z|^2 =: \mathbb{L}^{\tilde{\nu},\tilde{\nu}}_{\kappa}$$
(9)

that we can realize it also as $\mathbb{L}_{\kappa}^{\tilde{\nu}} = (\nabla_{\theta_{\kappa}}^{\tilde{\nu}})^* \nabla_{\theta_{\kappa}}^{\tilde{\nu}}$ acting on scalar functions on M_{κ} . Thus, let us consider the following eigenvalue problem:

$$\mathbb{L}^{\bar{\nu}}_{\kappa}\phi = \mu\phi, \qquad \phi \in L^2(M_{\kappa}; \mathrm{d}\mu_{\kappa}), \qquad \mu \in \mathbb{C}.$$
(10)

Then, we have

Proposition 2. (i) The discrete part $\operatorname{Spec}_d(\mathbb{L}^{\tilde{v}}_{\kappa})$ of the spectrum of the Landau Hamiltonian $\mathbb{L}^{\tilde{v}}_{\kappa}$ on $L^2(M_{\kappa}; d\mu_{\kappa})$ is given by

$$\operatorname{Spec}_d(\mathbb{L}^{\tilde{\nu}}_{\kappa}) = \left\{ \mu_{\kappa}(m) := \tilde{\nu}(2m+1) + \kappa m(m+1), \quad m \in \mathbb{Z}^+, \quad 0 \leqslant m < \frac{2\tilde{\nu} + \kappa}{|\kappa| - \kappa} \right\}$$

with the conditions $2\tilde{v} + \kappa > 0$ for $\kappa \leq 0$ and $2\tilde{v}/\kappa \in \mathbb{Z}^+$ for $\kappa > 0$.

(ii) A smooth function $\phi \in L^2(M_{\kappa}; d\mu_{\kappa})$ is a solution of (10) if and only if $\mu = \mu_{\kappa}(m)$. In this case, ϕ is expanded explicitly in terms of the Gauss hypergeometric function $_2F_1(a, b; c; x)$ as follows

$$\phi(z) = \sum_{p=0}^{+\infty} \sum_{q=0}^{m} a_{pq}^{m} \phi_{\kappa,m}^{\tilde{\nu},pq}(z),$$
(11)

where

$$\phi_{\kappa,m}^{\tilde{\nu},pq}(z) := (1+\kappa|z|^2)^{-\frac{\tilde{\nu}}{\kappa}-m} {}_2F_1\left(q-m, p-m-\frac{2\tilde{\nu}}{\kappa}; p+q+1; -\kappa|z|^2\right) z^p \bar{z}^q \tag{12}$$

for $p, q \in \mathbb{Z}^+$ such that pq = 0. The complex numbers a_{pq}^m satisfies the following growth condition:

$$\sum_{p=0}^{+\infty} \frac{m!(p!)^2}{2(p+m)!} \cdot \left(\frac{|\kappa|^{-p} \Gamma\left(\frac{2\tilde{\nu}}{\kappa} - m\right)}{(2\tilde{\nu} + \kappa(2m+1))\Gamma\left(\frac{2\tilde{\nu}}{\kappa} + p - m\right)} \right) \left| a_{p0}^m \right|^2 < +\infty.$$
(13)

Proof. The result in (i) is well known in the literature of mathematics and physics as Landau energy levels. See for instance [2, 3, 6]. For the first part of (ii) (i.e., (11), (12)); the reader can refer to [3] and [11] for example. The growth condition (13) for the coefficients a_{pq}^m is given in [7].

Remark 2. The continuous part Spec_c ($\mathbb{L}_{\kappa}^{\tilde{\nu}}$) of the spectrum of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ on $L^{2}(M_{\kappa}; d\mu_{\kappa})$ is empty for $\kappa \ge 0$. For the disc D_{ρ} of radius ρ (i.e., $\kappa = \frac{-1}{\rho^{2}} < 0$), it is given by

$$\operatorname{Spec}_{c}\left(\mathbb{L}_{\kappa}^{\tilde{\nu}}\right) = \left[-\frac{\kappa}{4} - \frac{\nu^{2}}{\kappa}, +\infty\right] = \left[\frac{1}{4\rho^{2}} + \nu^{2}\rho^{2}, +\infty\right].$$
(14)

3.2. L^2 -eigenforms of the Pauli Hamiltonian $\mathbb{P}^{\nu}_{\kappa}$

We fix $\nu > 0$ and consider the following eigenvalue problem for the Pauli Hamiltonian $\mathbb{P}^{\nu}_{\kappa}$ on $\mathcal{H}_{\kappa} = L^2(M_{\kappa}; \mathrm{d}m) \,\mathrm{d}z \oplus L^2(M_{\kappa}; \mathrm{d}m) \,\mathrm{d}\overline{z}$:

$$\mathbb{P}^{\nu}_{\kappa}\omega = \lambda\omega, \qquad \omega = f \, \mathrm{d}z + g \, \mathrm{d}\bar{z} \in \mathcal{H}_{\kappa}, \qquad \lambda \in \mathbb{C}.$$
(15)

According to the explicit expression of $\mathbb{P}^{\nu}_{\kappa}$ given in theorem 1, the above equation (15) reduces further to that of the scalar Landau Hamiltonian $\mathbb{L}^{\tilde{\nu}}_{\kappa}$. Namely, we have

Lemma 2. Let

$$\mathbf{S}_{\kappa} = \begin{pmatrix} 1+\kappa|z|^2 & 0\\ 0 & 1+\kappa|z|^2 \end{pmatrix}.$$

Then

$$\mathbb{P}_{\kappa}^{\nu} = \mathbf{S}_{\kappa}^{-1} \left\{ \begin{pmatrix} \mathbb{L}_{\kappa}^{\nu-\kappa} & 0\\ 0 & \mathbb{L}_{\kappa}^{\nu+\kappa} \end{pmatrix} - \begin{pmatrix} \nu-\kappa & 0\\ 0 & -(\nu+\kappa) \end{pmatrix} \right\} \mathbf{S}_{\kappa}.$$
(16)

Proof. By considering the unitary operator of multiplication by $(1 + \kappa |z|^2)$ from $L^2(M_{\kappa}; dm)$ onto $L^2(M_{\kappa}; d\mu_{\kappa})$, i.e.,

$$L^{2}(M_{\kappa}; \mathrm{d}m) \longrightarrow L^{2}(M_{\kappa}; \mathrm{d}\mu_{\kappa})$$
$$f \longmapsto (1 + \kappa |z|^{2}) f =: \tilde{f},$$

and using direct computation we see that for arbitrary $\alpha, \beta \in \mathbb{R}$, we have

$$\mathbb{L}_{\kappa}^{\alpha,\beta}(f) = (1+\kappa|z|^2)^{-1} \mathbb{L}_{\kappa}^{\frac{\alpha+\rho}{2}} [(1+\kappa|z|^2)f].$$
(17)

Hence, result (16) holds as immediate consequence of theorem 1 and (17). $\hfill \square$

Therefore, equation (15) becomes equivalent to the following system:

$$\begin{cases} \mathbb{L}_{\kappa}^{\nu_{1}}\tilde{f} = (\lambda + 4\nu_{1})\tilde{f} \\ \vdots \\ \mathbb{L}_{\kappa}^{\nu_{2}}\tilde{g} = (\lambda - 4\nu_{2})\tilde{g} \end{cases}; \qquad \tilde{f}, \tilde{g} \in L^{2}(M_{\kappa}; d\mu_{\kappa}), \tag{18}$$

with $v_1 = v - \kappa$ and $v_2 = v + \kappa$. Thus, using (i) of proposition 2, we get

Proposition 3. The L^2 -eigenvalues of the Pauli Hamiltonian $\mathbb{P}^{\nu}_{\kappa}$ acting on $\mathcal{H}^+_{\kappa} = L^2(M_{\kappa}; dm) dz$ are given by

$$\lambda_{\kappa}^{+}(l) = 2\nu l + \kappa l(l-1), \qquad l = 0, 1, 2, \dots,$$
(19)

with $0 \leq l < \nu\rho^2 + \frac{1}{2}$ for the disc D_{ρ} and $2\nu\rho^2 = 2, 3, \ldots$, for S_{ρ}^2 . Whereas, the L^2 -eigenvalues of $\mathbb{P}^{\nu}_{\kappa}$ acting on $\mathcal{H}^{-}_{\kappa} = L^2(M_{\kappa}; \mathrm{d}m) \,\mathrm{d}\bar{z}$ are given by

$$\lambda_{\kappa}^{-}(l') = 2\nu(l'+1) + \kappa(l'+1)(l'+2), \qquad l' = 0, 1, 2, \dots,$$
(20)

with $0 \leq l' < v\rho^2 - \frac{3}{2}$ for D_{ρ} and $2v\rho^2 = 1, 2, ..., for S_{\rho}^2$.

Furthermore, if ∇_{α} is the first-order differential operator defined by

$$\nabla_{\alpha} := (1+\kappa|z|^2)\frac{\partial}{\partial z} + (\alpha+\kappa)\overline{z}, \qquad \alpha \in \mathbb{R},$$

then we have

Theorem 2. The differential form f dz (resp. $g d\overline{z}$) is the solution of $\mathbb{P}^{\nu}_{\kappa} \omega = \lambda \omega$ in \mathcal{H}^{+}_{κ} (resp. in \mathcal{H}^{-}_{κ}) if and only if $\lambda = \lambda^{+}_{\kappa}(l)$ (resp. $\lambda = \lambda^{-}_{\kappa}(l')$) and f (resp. g) can be expanded in $L^{2}(\mathbb{C}; dm)$ as follows

$$f(z) = (1 + \kappa |z|^2)^{-1} \nabla_{\nu - \kappa} \circ \nabla_{\nu} \circ \cdots \circ \nabla_{\nu + (l-2)\kappa} [(1 + \kappa |z|^2)^{-\frac{\nu}{\kappa} - l + 1} h(z)]$$

(resp. $g(z) = (1 + \kappa |z|^2)^{-1} \nabla_{\nu + \kappa} \circ \nabla_{\nu + 2\kappa} \circ \cdots \circ \nabla_{\nu + l'\kappa} [(1 + \kappa |z|^2)^{-\frac{\nu}{\kappa} - l' - 1} h(z)]),$

where $h(z) = \sum_{p=0}^{+\infty} a_p z^p$ is an arbitrary holomorphic function on M_{κ} whose coefficients a_p satisfy the growth condition given in (13) for $\tilde{v} = v - \kappa$ (resp. $\tilde{v} = v + \kappa$).

Proof. Let $f dz \in \mathcal{H}_{\kappa}^{+}$ be a solution of $\mathbb{P}_{\kappa}^{\nu}(f dz) = \lambda_{\kappa}^{+}(l) f dz$. Then, the function $\tilde{f} = (1 + \kappa |z|^{2}) f \in L^{2}(M_{\kappa}; d\mu_{\kappa})$ is a L^{2} -eigenfunction of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ $(\tilde{\nu} = \nu - \kappa)$ with $\mu_{\kappa}(l)$ as eigenvalue. Hence, \tilde{f} can be expanded as in (11)–(13).

To conclude for theorem 2, it suffices to see that every component $\phi_{\kappa,l}^{\nu,pq}$ can be written in terms of the first-order differential operator ∇_{α} . We claim

Lemma 3. Set $\nabla_{\tilde{\nu},m} := \nabla_{\tilde{\nu}} \circ \nabla_{\tilde{\nu}+\kappa} \circ \cdots \circ \nabla_{\tilde{\nu}+(m-1)\kappa}$. Then, in terms of the Gauss hypergeometric function $_2F_1$, we have

$$\nabla_{\tilde{\nu},m} \Big[(1+\kappa|z|^2)^{-\frac{\tilde{\nu}}{\kappa}} z^p \Big] = C_{\kappa}^{\tilde{\nu}}(p,m)(1+\kappa|z|^2)^{-\frac{\tilde{\nu}}{\kappa}-m} |z|^{|m-p|} e^{-i(m-p)\arg z} \\ \times {}_2F_1 \left(-Min(p,m), Max(p-m,0) - m - \frac{2\tilde{\nu}}{\kappa}; |m-p|+1; -\kappa|z|^2 \right)$$

Whose proof can be handled by induction using some known transformations on hypergeometric functions. $\hfill \Box$

Remark 3. Here we have given the result in a unified manner for both positive and negative constant curvature κ , which recovers also the flat case ($\kappa = 0$). In the particular case of the Pauli Hamiltonian on the sphere S_{ρ}^2 ($\kappa = +1/\rho^2$), the result of theorem 2 can also be deduced from theorem 3 of [6].

4. Explicit formulae for the L^2 -eigenprojector kernels of $\mathbb{P}^{\nu}_{\kappa}$

Fix $\nu > 0$ and let $A_{l,l'}^{2,\nu}(\mathbb{P}_{\kappa}^{\nu})$ be the L^2 -eigenspace of the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$ associated with the L^2 -eigenvalue $\lambda = \lambda_{\kappa}(l, l')$. That is,

$$A_{l,l'}^{2,\nu}(\mathbb{P}^{\nu}_{\kappa}) = \left\{ \omega = \begin{pmatrix} f \\ g \end{pmatrix} \in L^{2}(M_{\kappa}; \mathrm{d}m) \oplus L^{2}(M_{\kappa}; \mathrm{d}m); \mathbb{P}^{\nu}_{\kappa}\omega = \lambda_{\kappa}(l, l')\omega \right\}.$$

Then, the Hilbert space $A_{l,l'}^{2,\nu}(\mathbb{P}_{\kappa}^{\nu})$ admits a L^2 -eigenprojector kernel (reproducing kernel) $\mathcal{K}_{\kappa;l,l'}^{\nu}(z,w)$, i.e., such that for all $\omega \in A_{l,l'}^{2,\nu}(\mathbb{P}_{\kappa}^{\nu})$ we have

$$\omega(z) = \int_{M_{\kappa}} \mathcal{K}^{\nu}_{\kappa;l,l'}(z,w)\omega(w) \,\mathrm{d}\mu_{\kappa}(w)$$

Moreover, it is given explicitly by the following:

Theorem 3. Fix $l, l' \in \mathbb{Z}^+$ such that $\lambda_{\kappa}^+(l) = \lambda_{\kappa}^-(l') = \lambda_{\kappa}(l, l')$. Then, the L^2 -eigenprojector kernel $\mathcal{K}_{\kappa;l,l'}^{\nu}(z, w)$ of the L^2 -eigenspace $A_{l,l'}^{2,\nu}(\mathbb{P}_{\kappa}^{\nu})$ is given by

$$\mathcal{K}^{\nu}_{\kappa;l,l'}(z,w) = \left(\frac{1+\kappa|w|^2}{1+\kappa|z|^2}\right) \begin{pmatrix} \tilde{\mathcal{K}}^{\nu-\kappa}_{\kappa,l}(z,w) & 0\\ 0 & \tilde{\mathcal{K}}^{\nu+\kappa}_{\kappa,l'}(z,w) \end{pmatrix},$$

where $\tilde{\mathcal{K}}^{\tilde{v}}_{\kappa:m}(z,w)$ is given explicitly by the following closed formula:

$$\tilde{\mathcal{K}}_{\kappa;m}^{\tilde{\nu}}(z,w) = \frac{2\tilde{\nu} + \kappa(2m+1)}{\pi} \left(\frac{1+\kappa\bar{z}w}{1+\kappa\bar{z}\bar{w}}\right)^{-\frac{\nu}{\kappa}} \times \left(\frac{|1+\kappa\bar{z}\bar{w}|^2}{(1+\kappa|z|^2)(1+\kappa|w|^2)}\right)^{\frac{\nu}{\kappa}+m} {}_2F_1\left(-m, -\frac{2\tilde{\nu}}{\kappa}-m; 1; -\kappa\frac{|z-w|^2}{|1+\kappa\bar{z}\bar{w}|^2}\right).$$
(21)

Proof. In view of (18), we split the Hilbert space $A_{l,l'}^{2,\nu}(\mathbb{P}_{\kappa}^{\nu})$ in a direct sum as follows:

$$A_{l,l'}^{2,\nu}(\mathbb{P}^{\nu}_{\kappa}) = (1+\kappa|z|^2)^{-1} A_{\mu^+_{\kappa}(l)}^{2,\nu} \left(\mathbb{L}^{\nu-\kappa}_{\kappa}\right) \mathrm{d}z \oplus (1+\kappa|z|^2)^{-1} A_{\mu^-_{\kappa}(l')}^{2,\nu} \left(\mathbb{L}^{\nu+\kappa}_{\kappa}\right) \mathrm{d}z.$$

where $A_{\mu_{\kappa}^{\ell}(m)}^{2,\nu}(\mathbb{L}_{\kappa}^{\tilde{\nu}})(\subset L^{2}(M_{\kappa}; d\mu_{\kappa}))$, for $\tilde{\nu} = \nu - \kappa$ and m = l or $\tilde{\nu} = \nu + \kappa$ and m = l', is the L^{2} -eigenspace of the Landau Hamiltonian $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ associated with the Landau level $\mu_{\kappa}^{\bullet}(m)$ (with $\mu_{\kappa}^{+}(l) = \lambda_{\kappa}^{+}(l) + (\nu - \kappa)$ and $\mu_{\kappa}^{-}(l') = \lambda_{\kappa}^{-}(l') - (\nu + \kappa)$). Therefore, $A_{l,l'}^{2,\nu}(\mathbb{P}_{\kappa}^{\nu})$ admits a L^{2} -eigenprojector kernel $\mathcal{K}_{\kappa;l,l'}^{\nu}(z, w)$ which is equal to

$$\mathcal{K}_{\kappa;l,l'}^{\nu}(z,w) = \frac{1}{\sqrt{2}} (1+\kappa|z|^2)^{-1} \begin{pmatrix} \tilde{\mathcal{K}}_{\kappa;l}^{\nu-\kappa}(z,w) & 0\\ 0 & \tilde{\mathcal{K}}_{\kappa;l'}^{\nu+\kappa}(z,w) \end{pmatrix} (1+\kappa|w|^2),$$

where $\tilde{\mathcal{K}}_{\kappa,m}^{\tilde{\nu}}(z,w)$ is the L^2 -eigenprojector kernel of the L^2 -eigenspace $\widetilde{A}_{\mu_{\kappa}^{\bullet}(m)}^{2,\tilde{\nu}}$ of $\mathbb{L}_{\kappa}^{\tilde{\nu}}$ associated with the Landau level $\tilde{\nu}(2m+1)+\kappa m(m+1)$. Then, we need just to specify further $\tilde{\mathcal{K}}_{\kappa,m}^{\tilde{\nu}}(z,w)$, which is given by the following well-established proposition.

Proposition 4. The L^2 -eigenprojector kernel $\tilde{\mathcal{K}}^{\tilde{v}}_{\kappa,m}(z,w)$ of the Landau Hamiltonian $\mathbb{L}^{\tilde{v}}_{\kappa}$ associated to the Landau level $\tilde{v}(2m+1) + \kappa m(m+1)$ is given explicitly by

$$\tilde{\mathcal{K}}_{\kappa,m}^{\tilde{\nu}}(z,w) = \frac{2\tilde{\nu} + \kappa(2m+1)}{\pi} \left(\frac{1+\kappa \bar{z}w}{1+\kappa z\bar{w}}\right)^{-\frac{\nu}{\kappa}} \times \left(\frac{|1+\kappa z\bar{w}|^2}{(1+\kappa|z|^2)(1+\kappa|w|^2)}\right)^{\frac{\tilde{\nu}}{\kappa}+m} {}_2F_1\left(-m, -\frac{2\tilde{\nu}}{\kappa}-m; 1; -\kappa\frac{|z-w|^2}{|1+\kappa z\bar{w}|^2}\right).$$
(22)

Thus, the proof of theorem 3 will be completed by proving (22) (for its proof see appendix B). \Box

Remark 4. If $\lambda_{\kappa}^{+}(l) \neq \lambda_{\kappa}^{-}(l')$, we have to consider two cases. The case $\lambda_{\kappa}(l, l') = \lambda_{\kappa}^{+}(l) \neq \lambda_{\kappa}^{-}(l')$, for which we have

$$\mathcal{K}_{\kappa;l}^{\nu}(z,w) = \left(\frac{1+\kappa|w|^2}{1+\kappa|z|^2}\right) \begin{pmatrix} \tilde{\mathcal{K}}_{\kappa;l}^{\nu-\kappa}(z,w) & 0\\ 0 & 0 \end{pmatrix}$$

and the case $\lambda_{\kappa}(l, l') = \lambda_{\kappa}^{-}(l') \neq \lambda_{\kappa}^{+}(l)$, for which we have

$$\mathcal{K}^{\nu}_{\kappa,l'}(z,w) = \left(\frac{1+\kappa|w|^2}{1+\kappa|z|^2}\right) \begin{pmatrix} 0 & 0\\ 0 & \tilde{\mathcal{K}}^{\nu+\kappa}_{\kappa,l'}(z,w) \end{pmatrix}$$

Particularly, for the bottom eigenvalue 0 (corresponding to $\lambda_{\kappa}^{+}(0) = 0$ for l = 0), we have

$$A_0^{2,\nu}(\mathbb{P}^{\nu}_{\kappa}) = \left\{ \omega = \begin{pmatrix} f \\ 0 \end{pmatrix}; f \in L^2(M_{\kappa}; \mathrm{d}m); \mathbb{P}^{\nu}_{\kappa}(f \mathrm{d}z) = 0 \right\},$$

and the associated kernel function $\mathcal{K}_{\kappa,0}^{\nu}(z,w)$ is given by

$$\mathcal{K}_{\kappa,0}^{\nu}(z,w) = \frac{2\nu - \kappa}{\pi} \left(\frac{1 + \kappa |w|^2}{1 + \kappa |z|^2} \right) \left(\frac{|1 + \kappa z \bar{w}|^2}{(1 + \kappa |z|^2)(1 + \kappa |w|^2)} \right)^{\frac{\nu}{\kappa} - 1} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

5. Euclidean limit

According to the above discussion, the following facts hold when $\kappa \to 0$ (i.e., when the radius ρ goes to $+\infty$).

Fact 1. The group of motions G_{κ} on M_{κ} converges to the affine group on the Euclidean plane $\mathbb{R}^2 = \mathbb{C}$. More exactly, viewing the groups of motions $G_{\kappa}, \kappa < 0, \kappa = 0, \kappa > 0$, as subspaces of $M_{2,2}(\mathbb{C})$, then for every fixed g_0 in the affine group $G_0 = \left\{ \begin{pmatrix} a & b \\ 0 & \overline{a} \end{pmatrix} \in M_{2,2}(\mathbb{C}); \\ |a|^2 = 1, b \in \mathbb{C} \right\}$, there exists a family $(g_{\kappa})_{\kappa}$ depending smoothly on κ such that $g_{\kappa} = \begin{pmatrix} a(\kappa) & b(\kappa) \\ -\kappa \overline{b}(\kappa) & \overline{a}(\kappa) \end{pmatrix} \in G_{\kappa}$ for every κ and $g_0 = \lim_{\kappa \to 0} g_{\kappa}$. Conversely, let $(g_{\kappa})_{\kappa}$ be such that $g_{\kappa} \in G_{\kappa}$ for every κ and $\lim_{\kappa \to 0} g_{\kappa}$ exists. Then, we have $\lim_{\kappa \to 0} g_{\kappa} \in G_0$. Further details can be found in [7] for a more general setting.

Fact 2. From (19) and (20), it is clear that the L^2 -eigenvalues of the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$ on M_{κ} converge to $2\nu l, l = 0, 1, \ldots$, that constitute the point spectrum of \mathbb{P}^{ν} , the Pauli Hamiltonian on the plane $\mathbb{R}^2 = \mathbb{C}$. This is exactly Comtet's result [3] for the Landau Hamiltonian with $\kappa < 0$.

Fact 3. The L^2 -eigenfunctions $\phi_{\kappa,m}^{\tilde{\nu},pq}(z)$ given in (12) associated with the L^2 -eigenvalue $\mu_{\kappa}(m) = \tilde{\nu}(2m+1) + \kappa m(m+1)$ and realized in lemma 3, up to a given multiplicative constant, as follows:

$$\nabla_{\tilde{\nu}} \circ \nabla_{\tilde{\nu}+\kappa} \circ \cdots \circ \nabla_{\tilde{\nu}+(m-1)\kappa} \left[(1+\kappa |z|^2)^{-\frac{\nu}{\kappa}} z^j \right]$$

gives rise, when κ tends to 0 and for every fixed $z \in \mathbb{C}$, to

$$\lim_{\kappa \to 0} \phi_{\kappa,m}^{\tilde{\nu},pq}(z) = \left(\frac{\partial}{\partial z} + \nu \bar{z}\right)^m \left(e^{-\nu |z|^2} z^j\right),$$

which constitute an orthogonal basis of the L^2 -eigenspace of the Landau Hamiltonian \mathbb{L}^{ν} for the flat case corresponding to the Landau level $\nu(2m+1) = \lim_{\kappa \to 0} \mu_{\kappa}(m)$. They are expressed in terms of the confluent hypergeometric function ${}_1F_1(a; c; x)$, up to a given multiplicative constant, as follows:

$$e^{-\nu|z|^2}|z|^{|p-m|}e^{-i(m-p)\arg z} F_1(-Min(m, p); |p-m|+1; 2\nu|z|^2).$$

Now, for the asymptotic of the L^2 -eigenprojector kernels of $\mathbb{P}^{\nu}_{\kappa}$, we have the following main result.

Theorem 4. Fix $\nu > 0$ and let $\kappa = \varepsilon/\rho^2$ for $\varepsilon = \mp 1$ and ρ varying such that $\rho^2 \in (1/2\nu)\mathbb{Z}^+$. Then, in the limit $\kappa \to 0$, the L^2 -eigenprojector kernel $\mathcal{K}_{\kappa;l,l'}^{\nu}(z, w)$ of $\mathbb{P}_{\kappa}^{\nu}$ converges pointwisely on $\mathbb{C} \times \mathbb{C}$ to the L^2 -eigenprojector kernel of \mathbb{P}^{ν} on \mathbb{C} .

Proof. Let us note first that for κ small enough the condition $2\tilde{\nu} + \kappa > 0$ in proposition 2 for $\kappa = -1/\rho^2$ is always satisfied and the assumption $\lambda_{\kappa}^+(l) = \lambda_{\kappa}^-(l')$ in theorem 3 reads simply l = l' + 1, so that the L^2 -eigenprojector kernel $\mathcal{K}_{\kappa;l,l'}^{\nu}(z, w)$ of the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$ is well

defined for a fixed $(z, w) \in \mathbb{C} \times \mathbb{C}$. Then, keeping in mind the explicit formula of $\mathcal{K}^{\nu}_{\kappa;l,l'}(z, w)$ (see theorem 3), we get

$$\lim_{\kappa \to 0} \frac{(2\tilde{\nu} + (2m+1)\kappa)}{\pi} \left(\frac{1 + \kappa \bar{z}w}{1 + \kappa z\bar{w}}\right)^{-\frac{\nu}{\kappa}} = \frac{2\nu}{\pi} e^{\nu(z\bar{w} - \bar{z}w)}$$

and

$$\lim_{\kappa \to 0} \left(\frac{|1 + \kappa z \bar{w}|^2}{(1 + \kappa |z|^2)(1 + \kappa |w|^2)} \right)^{\frac{\nu}{\kappa} + m} = \mathrm{e}^{-\nu |z - w|^2}$$

for $\tilde{\nu} = \nu - \kappa$ or $\nu + \kappa$. Then, using the well-known fact

$$\lim_{t \to 0} {}_2F_1\left(a, b+t; c; \frac{x}{t}\right) = {}_1F_1(a; c; x)$$

we conclude that

$$\lim_{\kappa \to 0} {}_{2}F_{1}\left(-l, -\frac{2\tilde{\nu}}{\kappa} - l; 1; -\kappa \frac{|z - w|^{2}}{|1 + \kappa z \bar{w}|^{2}}\right) = {}_{1}F_{1}(-l; 1; 2\nu|z - w|^{2})$$

and

$$\lim_{\kappa \mapsto 0} {}_{2}F_{1}\left(-l', -\frac{2\tilde{\nu}}{\kappa} - l'; 1; -\kappa \frac{|z-w|^{2}}{|1+\kappa z\bar{w}|^{2}}\right) = {}_{1}F_{1}(1-l; 1; 2\nu|z-w|^{2})$$

for l = l' + 1. Therefore, we have

$$\lim_{\kappa \mapsto 0} \mathcal{K}^{\nu}_{\kappa;l,l'}(z,w) = \frac{2\nu}{\pi} e^{\nu(z\bar{w}-\bar{z}w)} e^{-\nu|z-w|^2} \\ \times \begin{pmatrix} {}_{1}F_{1}(-l;1;2\nu|z-w|^2) & 0 \\ 0 & {}_{1}F_{1}(1-l;1;2\nu|z-w|^2) \end{pmatrix}.$$

Finally, note that the right-hand side is nothing but the L^2 -eigenprojector kernel $\mathcal{K}_{0,l}^{\nu}(z, w)$ of the Pauli Hamiltonian \mathbb{P}^{ν} of the Euclidean plane \mathbb{C} . In fact, we have

Lemma 4. For l = 0, the L^2 -eigenprojector kernel of the L^2 -eigenspace $A_0^{2,\nu}(\mathbb{P}^{\nu})$ is given by

$$\frac{2\nu}{\pi} e^{\nu(z\bar{w}-\bar{z}w)} e^{-\nu|z-w|^2} \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}.$$

For $l \neq 0$, the L^2 -eigenprojector kernel of the L^2 -eigenspace $A_l^{2,\nu}(\mathbb{P}^{\nu})$ is given by

$$\mathcal{K}_{0,l}^{\nu}(z,w) = \frac{2\nu}{\pi} e^{\nu(z\bar{w}-\bar{z}w)} e^{-\nu|z-w|^2} \begin{pmatrix} {}_{1}F_{1}(-l;1;2\nu|z-w|^2) & 0\\ 0 & {}_{1}F_{1}(1-l;1;2\nu|z-w|^2) \end{pmatrix}.$$

This finishes the proof of theorem 4.

6. Concluding remarks

In this paper, we have provided concrete spectral properties, such as the explicit formulae for the L^2 -eigenforms and the L^2 -eigenprojector kernels, of the Pauli Hamiltonians $\mathbb{P}_{\kappa}^{\nu}$ on simply connected Riemann surfaces with constant scalar curvature $\kappa = \varepsilon/\rho^2$. Further, we have discussed their limits when $\kappa \to 0$ (i.e. $\rho \to +\infty$). This was possible thanks to the explicit expression of $\mathbb{P}_{\kappa}^{\nu}$ (theorem 1). Below, we point out some related remarks.

In contrast to the case of the scalar Landau Hamiltonians $\mathbb{L}_{\kappa}^{\nu}$, the value 0 is an isolated L^2 -eigenvalue for the Pauli Hamiltonians $\mathbb{P}_{\kappa}^{\nu}$. The corresponding L^2 -eigenspace reduces further

to ker $\mathbb{P}^{\nu}_{\kappa}$ in \mathcal{H}_{κ} . More exactly, for the hyperbolic disc D_{ρ} , the corresponding L^2 -eigenspace ker $\mathbb{P}^{\nu}_{\kappa}$ given by

$$\left\{ \begin{pmatrix} f\\0 \end{pmatrix}; f(z) = \left(1 - \left|\frac{z}{\rho}\right|^2\right)^{\nu\rho^2} \sum_{p=0}^{+\infty} a_p z^p \text{ with } \sum_{p=0}^{+\infty} \frac{\rho^{2p} p! \Gamma(2\nu\rho^2 + 2) |a_p|^2}{\Gamma(2\nu\rho^2 + p + 2)} < +\infty \right\}$$

is isomorphic to the usual weighted Bergman Hilbert space of square integrable holomorphic functions on D_{ρ} with respect to the density $\left(1 - \left|\frac{z}{\rho}\right|^2\right)^{2\nu\rho^2 - 2} dm$. For S_{ρ}^2 , the null space of the Pauli Hamiltonian is reduced essentially, up to the multiplicative function $\left(1 + \left|\frac{z}{\rho}\right|^2\right)^{-\nu\rho^2}$, to the space of polynomial functions of degrees less than or equal to the integer $2\nu\rho^2$. Therefore, it results that the formal limit of such Hilbert spaces, when $\rho \to +\infty$, gives rise to ker \mathbb{P}^{ν} which is isomorphic to the classical Bargmann–Fock space

$$\left\{h: \mathbb{C} \to \mathbb{C}, \quad h \text{ entire on } \mathbb{C} \text{ and } \int_{\mathbb{C}} |h(z)|^2 e^{-2\nu|z|^2} dm(z) < +\infty\right\}.$$

Also, we note that the L^2 -eigenvalues $\lambda_{\kappa}^+(l)$ and $\lambda_{\kappa}^-(l')$ of the Pauli Hamiltonian \mathbb{P}_{κ}^ν occur with infinite multiplicities for $\kappa \leq 0$. For $\kappa = +1/\rho^2 > 0$, they occur with finite degeneracies. More precisely, for the eigenvalue $2\nu l + \kappa l(l-1)$, the multiplicity is $2\nu\rho^2 + 2l - 1$ and for the eigenvalue $2\nu(l+1) + \kappa(l+1)(l+2)$, the multiplicity is $2\nu\rho^2 + 2l + 3$. Therefore, when the planar image is taken we recuperate the eigenvalues with their multiplicities.

We conclude this section by noting that under the assumptions $2\nu\rho^2 > 3$ for the disc D_{ρ} and $2\nu\rho^2 = 2, 3, ...,$ for S_{ρ}^2 , the existence of a L^2 -eigenform $\omega = f dz + g d\bar{z}$ with $f \neq 0$ and $g \neq 0$ is related to the existence of a solution (l, l') of the following algebraic equation:

$$l(2\nu\rho^{2} + 1 - l) = (l' + 1)(2\nu\rho^{2} - 2 - l').$$
(23)

It depends clearly on the value of $2\nu\rho^2$. Thus, if $2\nu\rho^2$ is irrational there is no solution of (23). Further, one can show that (l, l') to be a solution for (23), we must have necessary $l' \ge l$. So, (l, l + s) for $s \in \mathbb{Z}^+$, is a solution if and only if $2\nu\rho^2$ is rational such that $(2l + s + 1)(s + 2) = 2\nu\rho^2(s + 1)$. Note finally that such equation (23) reads simply l = l' + 1 for ρ large enough.

Acknowledgments

I am deeply indebted to Professor A Intissar for helpful comments and discussion on the subject. Also I would like to thank Professor Floyd L Williams for reading and improving the manuscript. Special thanks are addressed to Professor H Sami for financial support and encouragement.

Appendix A. Proof of theorem 1

We first fix further notation and recall some needed facts. For p = 0, 1 or 2, let \mathcal{H}_{κ}^{p} denote the Hilbert space obtained as the completion of $\mathcal{C}_{c}^{\infty}(M_{\kappa}; \Lambda^{p}M_{\kappa})$, the space of \mathcal{C}^{∞} -differential *p*-forms with compact support in M_{κ} , with respect to the natural Hermitian scalar product induced from the metric ds_{κ}^{2} and defined by

$$(\alpha,\beta)_p := \int_{M_{\kappa}} \alpha \wedge \star \beta, \qquad \alpha,\beta \in \mathcal{C}^{\infty}_c(M_{\kappa};\Lambda^p M_{\kappa}).$$
(A.1)

In the integrand, \star is the Hodge star operator canonically associated with ds_{κ}^2 acting on differential forms of M_{κ} as follows

$$\star 1 = 2\mathbf{i}\frac{\mathrm{d}z \wedge \mathrm{d}\bar{z}}{(1+\kappa|z|^2)^2}; \quad \star \mathrm{d}z = \mathbf{i}\,\mathrm{d}\bar{z}; \quad \star \mathrm{d}\bar{z} = -\mathbf{i}\,\mathrm{d}z; \quad \star (\mathrm{d}z \wedge \mathrm{d}\bar{z}) = \frac{\mathbf{i}}{2}(1+\kappa|z|^2)^2$$

At this level let mention that the adjoints d^* of d and $(\mathbf{ext}\,\theta_{\kappa})^*$ of $\mathbf{ext}\,\theta_{\kappa}$, with respect to the Hermitian scalar product (A.1), are given respectively by

$$d^* = - \star d \star$$
 and $(\operatorname{ext} \theta_{\kappa})^* = \star (\operatorname{ext} \theta_{\kappa}) \star$.

Then, for p = 0, the space \mathcal{H}^0_{κ} is nothing but the usual Hilbert space of square integrable complex-valued functions on M_{κ} with respect to the volume measure $d\mu_{\kappa}$, i.e., $\mathcal{H}^0_{\kappa} = L^2(M_{\kappa}; d\mu_{\kappa})$. For p = 1, the Hilbert space \mathcal{H}^1_{κ} of L^2 -differential 1-forms $\omega = f dz + g d\bar{z}$ consists of the couple of functions (f, g) on M_{κ} that are square integrables with respect to the Lebesgue measure dm. That is

$$\mathcal{H}^1_{\kappa} = L^2(M_{\kappa}; \mathrm{d}m) \,\mathrm{d}z \oplus L^2(M_{\kappa}; \mathrm{d}m) \,\mathrm{d}\bar{z} =: \mathcal{H}_{\kappa}.$$

Now, let us proceed to the proof of theorem 1.

Proof. Note first that the Pauli Hamiltonian $\mathbb{P}_{\kappa}^{\nu}$,

$$\mathbb{P}_{\kappa}^{\nu} = (d + i\nu \operatorname{ext} \theta_{\kappa})^{*} (d + i\nu \operatorname{ext} \theta_{\kappa}) + (d + i\nu \operatorname{ext} \theta_{\kappa}) (d + i\nu \operatorname{ext} \theta_{\kappa})^{*},$$

can be rewritten in the following form:

$$\mathbb{P}_{\kappa}^{\nu} = [d, d^*]_{+} + \mathrm{i}\nu([d^*, \operatorname{ext} \theta_{\kappa}]_{+} - [d, (\operatorname{ext} \theta_{\kappa})^*]_{+}) + \nu^2 [\operatorname{ext} \theta_{\kappa}, (\operatorname{ext} \theta_{\kappa})^*]_{+},$$

where $[A, B]_{+} = AB + BA$. Therefore, for $\omega = f dz + g d\overline{z} \equiv {f \choose g}$ being an arbitrary smooth differential 1-form on M_{κ} and $h_{\kappa}(z) := 1 + \kappa |z|^2$, we get the following results by direct computation:

Lemma 5. The Hodge–de Rham operator $d^*d + dd^*$ acting on ω is given by the following explicit expression in the complex coordinate *z*:

$$d^*d + dd^* = -h_{\kappa}(z) \left\{ h_{\kappa}(z) \begin{pmatrix} \partial^2 / \partial z \partial \bar{z} & 0 \\ 0 & \partial^2 / \partial z \partial \bar{z} \end{pmatrix} + 2\kappa \begin{pmatrix} \overline{E} & 0 \\ 0 & E \end{pmatrix} \right\},$$

where \overline{E} is the complex conjugate of the complex Euler operator $E = z\partial/\partial z$.

Lemma 6. The operators $[\mathbf{ext}\,\theta_{\kappa}, (\mathbf{ext}\,\theta_{\kappa})^*]_+, [d, (\mathbf{ext}\,\theta_{\kappa})^*]_+ and [d^*, \mathbf{ext}\,\theta_{\kappa}]_+ act by$

- (i) $[\mathbf{ext}\,\theta_{\kappa}, (\mathbf{ext}\,\theta_{\kappa})^*]_+\omega = |z|^2\omega.$
- (*ii*) $[d^*, \operatorname{ext} \theta_{\kappa}]_{+}\omega = \frac{\mathrm{i}}{2}[h_{\kappa}(z)(E \overline{E})\omega + h_{\kappa}(z)\sigma_3\omega + \kappa T_z\omega].$
- (*iii*) $[d, (\mathbf{ext}\,\theta_{\kappa})^*]_+\omega = -\frac{\mathrm{i}}{2}[h_{\kappa}(z)(E-\bar{E})\omega + h_{\kappa}(z)\sigma_3\omega \kappa T_z\omega],$

where $\sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $T_z := \begin{pmatrix} 0 & \bar{z}^2 \\ -z^2 & 0 \end{pmatrix}$, *i.e.*, $\sigma_3(f \, dz + g \, d\bar{z}) := f \, dz - g \, d\bar{z}$ and $T_z(f \, dz + g \, d\bar{z}) = \bar{z}^2 g \, dz - z^2 f \, d\bar{z}$.

Thus, by combining the above results, we obtain the desired explicit expression of $\mathbb{P}^{\nu}_{\kappa}$ of theorem 1.

Appendix B. Sketch of the proof of proposition 4

The proof of this proposition can be checked in a similar way as in [11] or [7].

First note that using the invariance property of the Landau Hamiltonian $\mathbb{L}^{\tilde{\nu}}_{\kappa}$ by the group of motions G_{κ} (8), it follows that the L^2 -eigenprojector kernel $\tilde{\mathcal{K}}^{\tilde{\nu}}_{\kappa,m}(z,w)$ satisfies the following invariance property:

Lemma 7. For all $g \in G_{\kappa}$, we have

$$\tilde{\mathcal{K}}^{\tilde{\nu}}_{\kappa,m}(z,w) = \left(\frac{1+\kappa z \overline{g^{-1}.0}}{1+\kappa \overline{z} g^{-1}\cdot 0}\right)^{\frac{\nu}{\kappa}} \left(\frac{1+\kappa w \overline{g^{-1}\cdot 0}}{1+\kappa \overline{w} g^{-1}\cdot 0}\right)^{-\frac{\nu}{\kappa}} \tilde{\mathcal{K}}^{\tilde{\nu}}_{\kappa,m}(g\cdot z,g\cdot w).$$
(B.1)

Therefore, for $g = g_w := (1 + \kappa |w|^2)^{-\frac{1}{2}} \begin{pmatrix} 1 & w \\ -\kappa \bar{w} & 1 \end{pmatrix}$, which is clearly in G_{κ} and satisfies $g_w \cdot w = 0$ and $g_w^{-1} \cdot 0 = w$, we conclude (from (B.1)) that

$$\tilde{\mathcal{K}}^{\bar{\nu}}_{\kappa,m}(z,w) = \left(\frac{1+\kappa\bar{z}w}{1+\kappa z\bar{w}}\right)^{-\frac{\nu}{\kappa}} \tilde{\mathcal{K}}^{\bar{\nu}}_{\kappa,m}(g_w^{-1}\cdot z,0).$$
(B.2)

In addition, we have

Lemma 8. The function $Z \in M_{\kappa} \mapsto \tilde{\mathcal{K}}^{\tilde{\nu}}_{\kappa,m}(Z,0)$ is a radial L^2 -eigenfunction of $\mathbb{L}^{\tilde{\nu}}_{\kappa}$ with $\tilde{\nu}(2m+1) + \kappa m(m+1)$ as eigenvalue. More explicitly

$$\tilde{\mathcal{K}}^{\tilde{\nu}}_{\kappa,m}(Z,0) = \frac{2\tilde{\nu} + \kappa(2m+1)}{\pi} (1+\kappa|z|^2)^{-\frac{\tilde{\nu}}{\kappa}-m} {}_2F_1\left(-m, -\frac{2\tilde{\nu}}{\kappa}-m; 1; -\kappa|Z|^2\right).$$
(B.3)

Next, using the facts

$$|g_w^{-1} \cdot z|^2 = \frac{|z - w|^2}{|1 + \kappa z \bar{w}|^2} \quad \text{and} \quad 1 + \kappa |g_w^{-1} \cdot z|^2 = \frac{(1 + \kappa |z|^2)(1 + \kappa |w|^2)}{|1 + \kappa z \bar{w}|^2}$$

combined with (B.2) and (B.3), we obtain the desired result of proposition 4.

References

- Aharonov Y and Casher A 1979 Ground state of a spin 1/2 charged particle *Phys. Rev.* A 19 2461–3 Aharonov Y and Casher A 1980 *Sov. Phys. JETP* 79 2131–43
- [2] Avron J E and Pnueli A 1992 Landau Hamiltonians on symmetric spaces *Ideas and Methods in Quantum and Statical Physics (Oslo, 1988)* vol 2 ed S Albeverio, J E Fendstad, H Holden and T Lindstrom (Cambridge: Cambridge University Press) pp 96–117
- [3] Comtet A 1987 On the Landau levels on the hyperbolic plane Ann. Phys. 173 185-209
- [4] Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry (Berlin: Springer)
- [5] Dunne G V 1992 Hilbert space for charged particles in perpendicular magnetic fields Ann. Phys. 215 233-63
- [6] Ferapontov E V and Veselov A P 2001 Integrable Schrödinger operators with magnetic fields: factorisation method on curved surfaces J. Math. Phys. 42 590–607
- [7] Ghanmi A and Intissar A 2005 Asymptotic of complex hyperbolic geometry and L²-spectral analysis of Landau-like Hamiltonians J. Math. Phys. 46 at press
- [8] Karabali D and Nair V P 2002 Quantum Hall effect in higher dimensions Nucl. Phys. B 641 533–46 Preprint hep-th/0203264
- [9] Landau L D and Lifschits E M 1966 Mécanique quantique, théorie non-relativiste Editions (Moscow: MIR)
- [10] Novikov S P 1983 Two-dimensional Schrödinger operators in periodic fields Sov. Probl. Math. 23 3–32 Novikov S P 1985 J. Sov. Math. 28 1–19 (Engl. Transl.)

- [11] Peetre J and Zhang G 1993 Harmonic analysis on the quantized Riemann sphere Inter. J. Math. Math. Sci. 16 225–43
- [12] Rañada M F and Santander M 2002 On harmonic oscillators on the two-dimensional sphere S^2 and the hyperbolic plane H^2 J. Math. Phys. 43 431–51
- [13] Rauch J and Taylor M 1975 Potential and scattering theory on wildly perturbed domains J. Func. Anal. 18 27-59
- [14] Shigekawa I 1991 Spectral properties of Schrödinger operators with magnetic fields for a spin ¹/₂ particle J. Func. Anal. 101 255–85